## Measurement of Mobilities and Dissociation Constants by Capillary Isotachophoresis

JAN POSPÍCHAL, PETR GEBAUER, and PETR BOČEK\*

Institute of Analytical Chemistry, Czechoslovak Academy of Sciences, CS-611 42 Brno, Czechoslovakia

Received June 9, 1988 (Revised Manuscript Received November 28, 1988)

#### Contents

| I.    | Introduction                                                                                   | 419 |
|-------|------------------------------------------------------------------------------------------------|-----|
| II.   | Relations between Effective Mobility and Physicochemical Constants of Substances $(u_i, pK_a)$ | 419 |
| III.  | Methods of Determination of Effective Mobility                                                 | 420 |
|       | A. Potential-Gradient Detection                                                                | 420 |
|       | B. Conductivity Detection                                                                      | 421 |
|       | C. Thermocouple Detection                                                                      | 422 |
|       | D. Determination of Effective Mobility from Migration Time                                     | 422 |
| IV.   | Procedures for Determination of $u_i$ and $pK_a$                                               | 422 |
|       | A. Measurement of $u_i$ at Full Ionization                                                     | 422 |
|       | B. Evaluation of $u_i$ and $pK_a$ from Effective Mobility Measurements                         | 423 |
|       | C. Evaluation of $u_i$ and $pK_a$ from Simultaneous Measurement of $\bar{u}_i$ and $pH_i$      | 426 |
| V.    | Survey of Data                                                                                 | 426 |
| VI.   | Precision and Accuracy of the Methods                                                          | 426 |
| VII.  | Acknowledgments                                                                                | 429 |
| VIII. | References                                                                                     | 429 |

#### I. Introduction

For almost 20 years, analytical isotachophoresis has presented itself as a useful method for the analysis of a number of materials for ionogenic components.<sup>1,2</sup> The growing number of interesting applications<sup>3</sup> as well as the recent appearance of advanced instrumentation on the market<sup>4</sup> show the important place of isotachophoresis among modern analytical methods.

In isotachophoresis, substances are separated on the basis of different effective mobilities,  $\bar{u}$ . The sample zone is placed between the zones of leading (L) and terminating (T) electrolyte (see Figure 1a), and an electric current is applied. After complete separation has been reached, the individual substances migrate in individual zones with sharp boundaries (Figure 1b,c). The velocity of all these zones (including the leading and terminating zones) is the same:

$$v = E_{\mathbf{A}}\bar{u}_{\mathbf{A}} = E_{\mathbf{B}}\bar{u}_{\mathbf{B}} = E_{i}\bar{u}_{i} \tag{1}$$

where E is the electric field strength (potential gradient) and i denotes any zone of individual substance.

The effective mobility is the fundamental quantity that determines the isotachophoretic behavior of substances and the properties of isotachophoretic zones, including properties that are used for detection. There exists therefore an implicit possibility to obtain from an isotachophoretic analysis knowledge of effective mobilities of substances. The primary data obtained from the experiment are the actual values of this mobility (which are related to the actual ionic strength). For totally ionized species, these actual effective mobilities are equal to the actual ionic ones and can simply be recalculated to limiting ionic mobilities (which are related to zero ionic strength). When substances that are not fully dissociated are involved, obtaining the ionic mobilities is more complicated, but additionally the appropriate dissociation constants may be evaluated.

If analytical isotachophoresis is used for the abovementioned purpose, it gains the status of a method of physical chemistry. A great advantage of isotachophoresis lies in its separation possibilities, which enable one to determine the mobilities of substances that are not pure or in mixtures, without any sample pretreatment. That is why papers on the use of isotachophoresis for evaluation of mobilities and other data are not at all rare at present, forming a well-founded independent trend. The aim of this review is to give complete information on the basic methods used for obtaining mobilities and dissociation constants by isotachophoresis, as well as a survey of data published to date.

# II. Relations between Effective Mobility and Physicochemical Constants of Substances $(u_p)$

The effective mobility characterizes the migration of a substance as a whole; i.e., it describes the behavior of an electrophoretic zone of the substance or of a migrating front of this substance. The appropriate substance may consist of several ionic or neutral species that are in dynamic equilibrium with each other. The effective mobility of a partially dissociated substance is a function of the ionic mobilities:

$$\bar{u} = \sum_{i} x_{i} u_{i}$$

$$x_{i} = c_{i} / \sum_{i} c_{i}$$
(2)

where  $x_i$  are the molar fractions and  $c_i$  are the concentrations of the individual ionic forms of substance j present in the solution. The value of the effective mobility therefore depends also on the dissociation constants of the chemical equilibria and on the concentration of the component of the solution that influences these equilibria, i.e., the concentration of  $H^+$  in acid-base equilibria and ligand concentration in complex-forming equilibria.



Jan Pospichal studied at the University of Chemical Technology, Pardubice, Czechoslovakia, where he was interested in syntheses of phthalocyanine dyes. After obtaining his M.Sc. degree in 1981, he began working in the Institute of Analytical Chemistry, Czechoslovak Academy of Sciences, Brno, where he received his Ph.D. His field of interest is analytical capillary isotachophoresis.



Petr Gebauer studied at the Faculty of Science, University of Brno, Brno, Czechoslovakia, where he was involved in the research of inorganic S-N heterocycles. After obtaining his M.Sc. in 1978, he started his research career in the field of isotachophoresis at the Institute of Analytical Chemistry, Czechoslovak Academy of Sciences, Brno, and received his Ph.D. in this field. At present, he is engaged in theoretical and methodological aspects of analytical isotachophoresis.



Petr Boček, born in Brno, Czechoslovakia, graduated from the University of Brno in 1964. After obtaining his M.Sc. in 1967 for work in analytical spectrophotometry, he obtained his Ph.D. in the field of gas chromatography and his D.Sc. in the field of analytical electrophoresis, both at the Institute of Analytical Chemistry, Czechoslovak Academy of Sciences, Brno. He currently works at this institute and is head of the department of electromigration methods. He worked with Prof. C. A. Cramers, Technological University, Eindhoven, The Netherlands, in 1971 and with Dr. A. Chrambach, National Institutes of Health, Bethesda, MD, in 1985. He has published over 100 scientific papers, mostly in the Journal of Chromatography and Electrophoresis, where he is also member of the editorial boards.

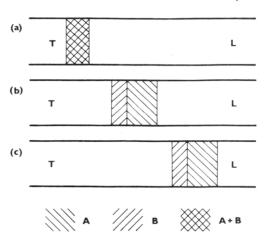



Figure 1. Scheme of isotachophoretic separation of a two-component mixture A + B: (a) initial state; (b, c) steady-state migration after complete separation of A and B has been reached.

For a monohydric weak acid HA, e.g., the molar fraction of A is given by

$$x_{\rm A} = K_{\rm HA}/(c_{\rm H} + K_{\rm HA}) \tag{3}$$

 $K_{\rm HA}$  is the dissociation constant of HA, and  $c_{\rm H}$  is the concentration of H+. The effective mobility of acid HA is then obtained by combining eq 2 and 3:

$$\bar{u}_{\rm HA} = u_{\rm A} \frac{K_{\rm HA}}{c_{\rm H} + K_{\rm HA}} \tag{4}$$

Analogously, for the molar fractions and effective mobility of a dihydric weak acid H<sub>2</sub>A, one can write

$$x_{\rm HA} = \frac{K_1 c_{\rm H}}{c_{\rm H}^2 + K_1 c_{\rm H} + K_1 K_2} \tag{5}$$

$$x_{\rm A} = \frac{K_1 K_2}{c_{\rm H}^2 + K_1 c_{\rm H} + K_1 K_2} \tag{6}$$

$$\bar{u}_{\rm H_2A} = \frac{K_1 c_{\rm H} u_{\rm HA} + K_1 K_2 u_{\rm A}}{c_{\rm H}^2 + K_1 c_{\rm H} + K_1 K_2} \tag{7}$$

where  $K_1$  and  $K_2$  are the dissociation constants of the acid and the subscripts HA and A denote the species HA<sup>-</sup> and A<sup>2-</sup>, respectively.

These relationships make the determination of ionic mobilities and dissociation constants from the measurement of effective mobilities possible.

#### III. Methods of Determination of Effective Mobility

In contemporary analytical capillary isotachophoresis, three techniques are commonly used for on-line detection of migrating zones, namely, potential-gradient detection, conductivity detection, and UV-absorption detection. The former two, which measure electric zone properties, are convenient for the evaluation of effective mobilities.

#### A. Potential-Gradient Detection

The potential-gradient detector provides a signal directly proportional to the electric field strength in the

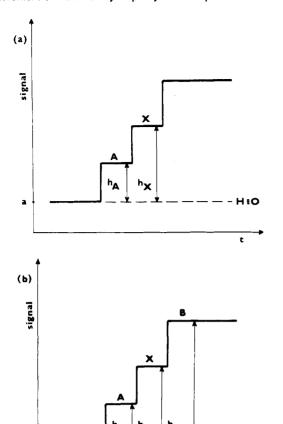



Figure 2. Evaluation of potential-gradient detection record: (a) actual base line (H) identical with ideal zero line (0); (b) actual base line (H) shifted against ideal zero line (0); a is the signal at zero driving current.

zone.<sup>5,6</sup> Assuming constant cross-section of the detection cell and known distance between the electrodes, the real value of the electric potential gradient is measured. In order to obtain an absolute scale, the detection signal may be calibrated by an external power source.

When performing exact measurements, one must take into account the polarization of the sensing electrodes. This contributes an extra voltage across the electrodes, which becomes part of the detection signal. As a result, the base line shows some drift from the real zero. In Figure 2a we can see a record of a potential-gradient detector signal; the actual base line (H) is identical with the ideal zero (0). Figure 2b shows the case where electrode polarization causes a displacement of the base line. The disturbing effect of polarization voltage can be suppressed by a suitable experimental arrangement, or it can be calculated and used for correction of experimental values (see below).

An experimental solution of the problem consists in the use of nonpolarizable electrodes.<sup>7</sup> Alternatively, it is possible to increase the measured voltage values so that the contribution of the polarization voltage to the signal magnitude becomes negligible. In this case it is also necessary to increase the distance between the measuring electrodes; otherwise too great of a driving current would be needed.

In potential-gradient detection, the zero is usually taken equal to the actual base line. The effective mobility of substance X can be expressed<sup>6</sup> as

$$\bar{u}_{X} = \bar{u}_{A}(h_{A}/h_{X}) \tag{8}$$

where h is the step height measured from this line and A is a suitable standard (e.g., the leading ion); cf. Figure 2a. For the elimination of the influence of electrode polarization, two standard substances are necessary

$$\bar{u}_{X} = \bar{u}_{A}\bar{u}_{B}\frac{h_{B} - h_{A}}{\bar{u}_{A}(h_{X} - h_{A}) - \bar{u}_{B}(h_{X} - h_{B})}$$
 (9)

where the step heights, h, are measured from any arbitrary base line (e.g., from the actual base line; cf. Figure 2b). If this base line is shifted into the step height of the leading zone and if the leading substance (A) is one of the standards, eq 9 reduces to

$$\frac{1}{\bar{u}_{\mathbf{X}}} = \frac{1}{\bar{u}_{\mathbf{A}}} + \left(\frac{1}{\bar{u}_{\mathbf{B}}} - \frac{1}{\bar{u}_{\mathbf{A}}}\right) \frac{h_{\mathbf{X}}}{h_{\mathbf{B}}} \tag{10}$$

Alternatively, the correction to the ideal zero can be done by calculating the magnitude of the polarization voltage.<sup>9</sup> This is performed by comparison of the measured and simulated ratios of potential gradients in the zones of a pair of standard substances whose mobilities and dissociation constants are known with sufficient precision. Hirokawa et al. derived the following equation:<sup>9</sup>

$$\Delta h = \frac{h_{\rm S} - h_{\rm L} R_{\rm E,S}}{R_{\rm E,S} - 1}$$
 (11)

where  $R_{\rm E,S}$  is the simulated ratio of potential gradients in zones S and L,  $E_{\rm S}/E_{\rm L}$ , and  $\Delta h$  is the magnitude of the polarization voltage expressed as the contribution to the step height. The so-obtained value of  $\Delta h$  is then added to the measured step heights of all zones. For the  $R_{\rm E}$  value of substance X this gives

$$R_{\rm E,X} = \frac{h_{\rm X} + \Delta h}{h_{\rm L} + \Delta h} = \frac{\bar{u}_{\rm L}}{\bar{u}_{\rm X}} \tag{12}$$

All of the foregoing expressions neglect the influence of temperature differences between the zones on the effective mobilities. For extrapolation of the measured values to zero driving current (i.e., to the thermostating temperature), the following equation can be used:<sup>10</sup>

$$\bar{u}_{X} = \bar{u}_{A} \frac{h_{A1}}{h_{X1}} \frac{h_{A2}}{h_{X2}} \frac{h_{X1}^{2} - h_{X2}^{2}}{h_{A1}^{2} - h_{A2}^{2}} \frac{h_{A1}/I_{2} - h_{A2}/I_{1}}{h_{X1}/I_{2} - h_{X2}/I_{1}}$$
(13)

where the subscripts 1 and 2 relate to two measurements at two different driving currents  $I_1$  and  $I_2$  and where the h values are assumed to be measured from the ideal zero.

#### **B.** Conductivity Detection

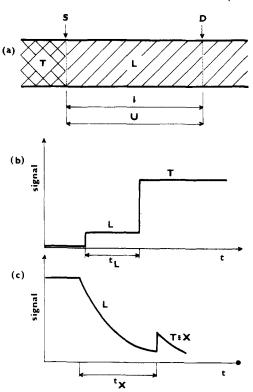
In conductivity detection we measure the specific resistance of the zone; the sensing electrodes are usually in contact with the electrolyte. The measurement is carried out by using alternating current of a suitable frequency.<sup>1</sup> The disadvantage of the isotachophoretic conductivity measurement over conventional conductometry stems from the small surface area of the sensing electrodes. This may result in a bias in the measured

values, arising from the adsorption of substances in the zones onto the surface of the sensing electrodes. Such adsorption effects occur especially when macromolecular substances are measured.

For conductivity detectors, the signal magnitude usually does not express the absolute value of the measured quantity, and the signal magnitude at zero specific resistance is not experimentally available. The absolute value must be obtained by calibration of the detection cell with solutions of known conductivity, e.g., 0.01–0.001 M KCl.<sup>11</sup>

In isotachophoretic practice, more often the detection signal is calibrated by the evaluated quantity, which is usually mobility. The evaluation of effective mobilities from the conductivity detector signal is analogous to the previous case; since the zero value is generally not available, two standards must be always used and the evaluation is made by using eq 9 or 10 (see also Figure 2b).

#### C. Thermocouple Detection


Formerly, the thermocouple detector signal was also used for evaluation of effective mobilities. This detector measures the temperature increase on the surface of the separation capillary. This is proportional to the electric output dissipated in a unit zone volume, corresponding to the rate of the Joule heat production. The thermocouple signal is linearly proportional to the effective mobility of the substance in its individual zone; thus, by using a suitable standard, the mobility may be evaluated. The thermocouple detector is not used in contemporary commercial instrumentation since it is not very suitable for the detection of short zones.

#### D. Determination of Effective Mobility from Migration Time

In some cases, the effective mobility has been evaluated from other data than described above. Most important is the evaluation from migration time. Here the measured substance must form either the leading or the terminating zone; i.e., the advantage of isotachophoresis as a separation technique is lost to a great extent.

The method of Kenndler et al.  $^{12}$  is useful when there is no suitable standard ion of known mobility; this is especially the case for nonaqueous solvents. In this method, the migration speed of the rear boundary of the leading zone containing the given substance is measured at a constant driving current. From the voltage across the ends of the column at the beginning of the experiment, the value of E is determined (see Figure 3a) and the effective mobility is then calculated directly from eq 1; see Figure 3b.

Another method for evaluating mobility from migration time has been described by Carchon and Eggermont.<sup>13</sup> The method consists in measuring the time of passage of the front boundary of the terminating zone (containing the measured substance) over a given distance in the column, with constant working voltage across the ends of the column. In the course of such a measurement, the boundary between the terminating zone and leading zone migrates into the column, causing an increase in resistance. This causes a decrease of the driving current and thus also a decrease of the thermocouple detection signal. From the record we may



**Figure 3.** Determination of effective mobility from migration time. (a) Starting situation: the column of length l is filled with leading electrolyte, the voltage across this length is U, and thus  $E_{\rm L}=U/l$ ; the boundary T–L starts to migrate at point S and it is detected at point D. (b) Evaluation of migration time  $t_{\rm L}$  at constant driving current. (c) Evaluation of migration time  $t_{\rm X}$  at constant voltage.

read out the time of passing the boundary through the detector, as depicted in Figure 3c. This time can be expressed as

$$t_{\rm X} = \frac{u_{\rm L} + \bar{u}_{\rm X}}{2u_{\rm T}\bar{u}_{\rm X}} \frac{l^2}{U} \tag{14}$$

where  $u_{\rm L}$  and  $\bar{u}_{\rm X}$  are the mobilities of the leading and measured ions, respectively, l is the migration distance, and U is the applied voltage. The relative apparent mobility was defined as

$$RAM = (t_S/t_X) \times 100 \tag{15}$$

where S denotes a suitable standard of known mobility. The effective mobility of the measured substance X is then given by

$$\bar{u}_{\rm X} = \frac{({\rm RAM})u_{\rm S}u_{\rm L}}{100(u_{\rm L} + u_{\rm S}) - ({\rm RAM})u_{\rm S}} \tag{16}$$

#### IV. Procedures for Determination of u and pK

#### A. Measurement of $u_i$ at Full Ionization

If the experimental conditions are selected so that the given substance is fully ionized in its zone, then its effective mobility is equal to the actual value of its ionic mobility. The choice of working conditions is easy in the case of strong electrolytes, where nearly any electrolyte system is convenient. For the measurement of ionic mobilities of weak electrolytes the choice of a system is more difficult. Calculations may help in the

choice of an electrolyte system where the electrolytes are completely ionized. Obviously, for this, the ionization constant must be known.

Owing to the dependence of mobility on temperature and ionic strength, the experimental conditions must always be specified. Concerning temperature effects, the measurement is usually carried out at low driving current where heating of the zone is negligible (<1 K), and the temperature is thus taken to be equal to the thermostating one. The ionic strength in the zone of a given substance depends on the parameters of this substance and on the composition of the leading electrolyte used. It may be calculated with sufficient precision after the measurement.

Values of ionic mobilities of alkylammonium and carboxylate ions were obtained by Kiso and Hirokawa. <sup>14</sup> The zone pH was calculated to show that the electrolytes were completely ionized at the experimental conditions.

The ionic strength in the zone was calculated and used for the calculation of the limiting ionic mobility. The measurements were performed at various temperatures that were determined directly in the zone by a miniature thermocouple. The reproducibility of the obtained values was estimated to be  $\pm 1.5 \times 10^{-9}$  m<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>.

For precise measurement of actual ionic mobilities a method based on the measurement of the electric potential gradient in the zones has been developed. This method eliminates the effect of polarization of the sensing electrodes by increasing the magnitude of the measured voltage owing to increased distance between these electrodes (10.5 mm). Moreover, the measurements were performed at a constant potential gradient in all zones (obtained by varying the driving current); this suppressed the temperature differences between the zones and eliminated the influence of nonlinearity of the detector on the accuracy of the measurement. The obtained values are determined at 0.01 M ionic strength.

## B. Evaluation of $u_i$ and $pK_a$ from Effective Mobility Measurements

From section II it follows that the evaluation of data from measurements at partial ionization of the substances is not easy. In practice, one should consider such experiments in only two cases: (i) if no isotachophoretic system in which the given substance is fully ionized is available and (ii) if one also needs to evaluate the values of the respective ionization constants from the measurements. In the latter case it is advantageous to evaluate the values of the ionic mobilities first from measurements performed at full ionization; this leads to increased precision of the determined values of the ionization constants.

The process of evaluation is depicted in Figure 4. Measurements must be performed in several electrolyte systems selected in such a way that the measured substance shows varied values of its effective mobility in each system. In this way, a series of effective mobilities and of the corresponding parameters of the leading electrolytes are obtained.

In the next step, the effective mobilities of the given substance are calculated for the leading electrolyte compositions used, with ionic mobility and  $pK_a$  taken

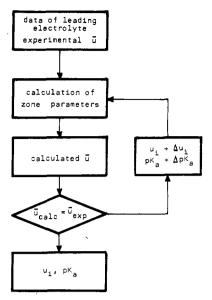



Figure 4. Scheme of evaluation of  $u_i$  and  $pK_a$  from measured effective mobilities  $(\bar{u})$ .

as the parameters. Usually, the well-known RFQ method<sup>1</sup> is used for this purpose. The best fit of the calculated data with the experimental data is used.

The described method has been extensively used especially by Hirokawa et al., who obtained large sets of limiting ionic mobilities and thermodynamic dissociation constants of anions, <sup>15</sup> nucleotides, phosphorus oxoacids, <sup>16</sup> amino acids, <sup>17</sup> and dipeptides. <sup>18</sup> Their calculation program is based on nonlinear regression by the least-squares method of the measured and simulated  $R_{\rm E}$  values of the given substance. The best results were obtained by first determining the actual ionic mobility. For the simulation, only the p $K_{\rm a}$  value was taken as the variable parameter. <sup>19</sup>

taken as the variable parameter. <sup>19</sup> A separate paper<sup>20</sup> was aimed at the accuracy of the resulting values of  $u_i$  and  $pK_a$  obtained by computer simulation (see section VI).

The method described above was used also for the measurement of mobilities and apparent dissociation constants of anionogenic substances in methanol.<sup>21</sup>

Kašička et al.<sup>11</sup> published a program for the calculation of concentration values of dissociation constants and of limiting ionic mobilities, including corrections to temperature and ionic strength. They used effective mobilities obtained by potential-gradient detection as input experimental values. From the known thermal resistance of the detection cell, the conductivity of the electrolyte, and the magnitude of the driving current, the zone temperature could be calculated and used for correction of all temperature-dependent quantities to standard temperature. In order to reach sufficient precision of the measured data, 14 different electrolyte systems were used.

The determination of stability constants of complexes by Kiso and Hirokawa<sup>22</sup> is based on the same principle as in the case of weak protolytes (see above). The  $R_{\rm E}$  values are measured at different concentrations of the ligand in the leading electrolyte and then compared with the calculated ones. The values of mobilities of some complex ions that were not known could be estimated by calculation from their molecular mass. By the mentioned method the authors obtained the stability constants of some complexes of tartaric and citric

TABLE I. Mobilities and  $pK_a$  Values of Anions in Water

| substance                                                             | $u, 10^{-9} \text{ m}^2$ $V^{-1} \text{ s}^{-1}$ | р $K_\mathtt{a}$                                           | <i>I</i> , <b>M</b> | ref                 | substance                                    | <i>u</i> , 10 <sup>-9</sup> m <sup>2</sup><br>V <sup>-1</sup> s <sup>-1</sup> | $pK_a$                                   | <i>I</i> , M       | ref             |
|-----------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|---------------------|---------------------|----------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------|--------------------|-----------------|
| ACES                                                                  | -31.3                                            | 6.84                                                       | 0.00505             | 32                  | cyanoacetate                                 | -42.1                                                                         |                                          | ?                  | 13              |
| acetate                                                               | -42.7                                            |                                                            | ?                   | 13                  | cysteine (1)                                 | -27.0                                                                         | 8.405                                    |                    | 17              |
| 4-111-4-                                                              | -39.4                                            | 0.4056                                                     | 0.01                | 8                   | cysteine (2)                                 | -53.9                                                                         | 9.845                                    |                    | 17              |
| acetylsalicylate                                                      | $-26.7 \\ -26.7$                                 | 3.485°                                                     | 0.01                | 9<br>8              | dichloroacetate<br>dichromate (1)            | -39.4<br>58.9                                                                 | 1.257°<br>0.745°                         |                    | 15<br>15        |
| acrylate                                                              | -30.4                                            |                                                            | 0.01                | 8                   | dichromate (2)                               | -82.1                                                                         | 6.723                                    |                    | 15              |
| adipate (2)                                                           | -43.5                                            |                                                            | 0.015               | 8                   | diethylbarbiturate                           | -26.2                                                                         | 7.91                                     | 0.00602            | 32              |
| ADP (1)                                                               | -19.2                                            |                                                            |                     | 16                  | 2,4-dihydroxybenzoate                        | -31.8                                                                         | 3.239                                    |                    | 15              |
| ADP (2)                                                               | -36.7                                            | 4.101                                                      |                     | 16                  | 3,5-diiodotyrosine (1)                       | -21.0                                                                         | 6.5                                      |                    | 17              |
| ADP (3)                                                               | -53.7                                            | 7.056                                                      |                     | 16                  | 3,5-diiodotyrosine (2)                       | -42.0                                                                         | 9.469                                    |                    | 17              |
| α-alanine<br>β-alanine                                                | -32.2<br>-30.8                                   | 9.857 $10.241$                                             |                     | $\frac{17}{17}$     | 2,3-dimethylbenzoate<br>2,4-dimethylbenzoate | $-27.1 \\ -27.1$                                                              | 3.738 <sup>a</sup><br>4.182 <sup>a</sup> |                    | 9<br>9          |
| p-alainne<br>alanylalanine                                            | -30.8 $-27.0$                                    | 8.490                                                      |                     | 18                  | 2,5-dimethylbenzoate                         | -27.1                                                                         | 3.977                                    |                    | 9               |
| alanyl- $\alpha$ -amino- $n$ -butyrate                                | -25.8                                            | 8.495                                                      |                     | 18                  | 2,6-dimethylbenzoate                         | -27.1                                                                         | 3.246°                                   |                    | 9               |
| alanylasparagine                                                      | -25.5                                            | 8.470                                                      |                     | 18                  | 3,4-dimethylbenzoate                         | -27.1                                                                         | $4.408^{a}$                              |                    | 9               |
| alanylglycine                                                         | -28.8                                            | 8.390                                                      |                     | 18                  | 3,5-dimethylbenzoate                         | -27.1                                                                         | 4.301°                                   |                    | 9               |
| eta-alanylhistidine                                                   | -24.4                                            | 9.664                                                      |                     | 18                  | 2,4-dinitrophenolate                         | -29.0                                                                         |                                          | 0.01               | 8               |
| alanylleucine                                                         | -23.9                                            | 8.505                                                      |                     | 18                  | diphenylacetate                              | -23.8                                                                         |                                          | ?                  | 13              |
| alanylmethionine                                                      | -24.2                                            | 8.463                                                      |                     | 18                  | dithionite (2)                               | <del>-67.7</del>                                                              |                                          | ?<br>?             | 13              |
| alanylphenylalanine<br>alanylserine                                   | -23.9<br>-26.2                                   | 8.502<br>8.297                                             |                     | 18<br>18            | dodecyl sulfate<br>enanthate                 | -23.1<br>-28.7                                                                | 4.887                                    | ·                  | 13<br>15        |
| alanylvaline                                                          | -25.2                                            | 8.500                                                      |                     | 18                  | o-ethoxybenzoate                             | -26.6                                                                         | $4.208^{a}$                              |                    | 9               |
| m-aminobenzoate                                                       | -28.2                                            | 0.000                                                      | 0.01                | 8                   | p-ethoxybenzoate                             | -26.6                                                                         | 4.796°                                   |                    | 9               |
| o-aminobenzoate                                                       | -28.8                                            |                                                            | 0.01                | 8                   | o-ethylbenzoate                              | -26.5                                                                         | 3.7934                                   |                    | 9               |
| p-aminobenzoate                                                       | -32.3                                            | 4.939                                                      |                     | 15                  | p-ethylbenzoate                              | -26.5                                                                         | $4.353^{a}$                              | ?                  | 9               |
|                                                                       | -28.9                                            |                                                            | ?                   | 13                  | fluoride                                     | -58.5                                                                         |                                          | ?                  | 13              |
|                                                                       | -28.5                                            | 0.005                                                      | 0.01                | 8                   | formate                                      | -57.1                                                                         | 3.796                                    | 0                  | 15              |
| $\alpha$ -amino- $n$ -butyrate                                        | -30.5                                            | 9.827                                                      |                     | 17                  |                                              | -58.4                                                                         |                                          | ?                  | 13              |
| AMP                                                                   | -22.6<br>-39.5                                   | $3.981 \\ 6.791$                                           |                     | 16<br>16            | fumarate (1)                                 | -53.2<br>-35.1                                                                | 3.02°                                    | 0.01               | 8<br>15         |
| asparagine                                                            | -31.6                                            | 9.030                                                      |                     | 17                  | Tumarate (1)                                 | -31.0                                                                         | 3.019 <sup>a</sup>                       |                    | 9               |
| aspartate (1)                                                         | -30.1                                            | 3.900                                                      |                     | 17                  | fumarate (2)                                 | -60.5                                                                         | 4.384°                                   |                    | 15              |
| aspartate (2)                                                         | -55.4                                            | 10.002                                                     |                     | 17                  | ` ,                                          | -61.2                                                                         | $4.384^{a}$                              |                    | 9               |
| ATP (2)                                                               | -37.5                                            |                                                            |                     | 16                  |                                              | -53.3                                                                         |                                          | 0.015              | 8               |
| ATP (3)                                                               | -49.2                                            | 4.418                                                      |                     | 16                  | gallate                                      | -24.0                                                                         | $4.469^{a}$                              | 0.01               | 8               |
| ATP (4)                                                               | -64.7                                            | 7.064                                                      | 0                   | 16                  | GDP (1)                                      | ~18.7 <sup>b</sup>                                                            | 0.050                                    |                    | 16              |
| azide                                                                 | −71.9<br>−38.7                                   |                                                            | ?<br>0.015          | 13<br>8             | GDP (2)<br>GDP (3)                           | -37.3<br>-52.9                                                                | 2.958<br>7.116                           |                    | 16<br>16        |
| azelaate (2)<br>barbiturate                                           | -36.7<br>-29.2                                   |                                                            | 0.015               | 8                   | GDP (4)                                      | $-68.5^{b}$                                                                   | 9.5 <sup>b</sup>                         |                    | 16              |
| benzoate                                                              | -32.9                                            | 4.166                                                      | 0.01                | 15                  | glucuronate                                  | -26.6                                                                         | 3.516                                    |                    | 15              |
| 201120400                                                             | -31.9                                            |                                                            | ?                   | 13                  | glutamate (1)                                | -28.7                                                                         | 4.302                                    |                    | 15              |
|                                                                       | -30.3                                            |                                                            | 0.01                | 8                   |                                              | -27.0                                                                         | 4.324                                    |                    | 17              |
| DL-benzyl aspartate                                                   | -25.7                                            | $4.885^{a}$                                                |                     | 15                  |                                              | -25.4                                                                         |                                          | 0.01               | 8               |
| BES                                                                   | -24.0                                            | 7.16                                                       | 0.00602             | 32                  | glutamate (2)                                | -54.3                                                                         | 9.960                                    |                    | 17              |
| 5-bromo-2,4-dihydroxybenzoate (1)                                     | -27.6                                            | $3.0^{b}$ $7.60$                                           |                     | 17<br>17            | glutamine                                    | -28.8<br>-46.2                                                                | 9.244                                    | 0.015              | 17<br>8         |
| 5-bromo-2,4-dihydroxybenzoate (2) o-tert-butylbenzoate                | -50.7<br>-23.2                                   | 3.535 <sup>a</sup>                                         |                     | 9                   | glutarate (2)<br>glycerate                   | -46.2<br>-36.3                                                                | 3.656                                    | 0.015              | 15              |
| p-tert-butylbenzoate                                                  | -23.2                                            | $4.400^{a}$                                                |                     | 9                   | glycine                                      | -37.4                                                                         | 9.7796                                   |                    | 17              |
| n-butyrate                                                            | -33.7                                            | 4.807                                                      |                     | 15                  | glycolate                                    | -42.3                                                                         | 3.850                                    |                    | 15              |
|                                                                       | -32.4                                            |                                                            | ?                   | 13                  | glycylalanine                                | -28.8                                                                         | 8.435                                    |                    | 18              |
| cacodylate                                                            | -29.9                                            | 6.182                                                      |                     | 15                  | glycyl- $\alpha$ -amino- $n$ -butyrate       | -27.5                                                                         | 8.412                                    |                    | 18              |
| caprate                                                               | -22.1                                            | 5ª                                                         |                     | 15                  | glycylasparagine                             | -27.2                                                                         | 8.388                                    |                    | 18              |
| n-caproate                                                            | -30.5                                            | 4.913                                                      | ?                   | 15<br>13            | glycylglycine<br>glycylisoleucine            | $-31.5 \\ -25.2$                                                              | 8.400<br>8.412                           |                    | 18<br>18        |
| caprylate                                                             | $-28.4 \\ -27.4$                                 | 4.930                                                      | ·                   | 15<br>15            | glycylleucine                                | -25.2<br>-25.1                                                                | 8.432                                    |                    | 18              |
| CDP (1)                                                               | -19.5                                            | 4.000                                                      |                     | 16                  | glycylphenylalanine                          | -24.8                                                                         | 8.235                                    |                    | 18              |
| CDP (2)                                                               | -40.0                                            | 4.782                                                      |                     | 16                  | glycylproline                                | -27.8                                                                         | 8.746                                    |                    | 18              |
| CDP (3)                                                               | -57.3                                            | 7.349                                                      |                     | 16                  | glycylserine                                 | -28.1                                                                         | 8.350                                    |                    | 18              |
| chlorate                                                              | -66.6                                            | $-2.7^{a}$                                                 |                     | 15                  | glycylthreonine                              | -26.3                                                                         | 8.334                                    |                    | 18              |
|                                                                       | -64.3                                            |                                                            | 0.01                | 8                   | glycyltryptophan                             | -23.6                                                                         | 8.359                                    |                    | 18              |
| chloroacetate                                                         | -41.9                                            | 2.865°                                                     | 0.01                | 15                  | glycyltyrosine (1)                           | -19.7                                                                         | 8.211                                    |                    | 18<br>18        |
| 3-chloropropionate                                                    | -37.4<br>-36.8                                   | 3.804                                                      | 0.01                | 8<br>15             | glycyltyrosine (2)<br>glycylvaline           | -39.4<br>-26.0                                                                | 9.981<br>8.385                           |                    | 18              |
| chromate (1)                                                          | -59.3                                            | 0.745°                                                     |                     | 15                  | GMP (1)                                      | -21.7                                                                         | 2.845                                    |                    | 16              |
| chromate (2)                                                          | -81.1                                            | $6.49^{a}$                                                 |                     | 15                  | GMP (2)                                      | -38.0                                                                         | 6.512                                    |                    | 16              |
| cinnamate                                                             | -28.3                                            | $4.438^{a}$                                                |                     | 9                   | GMP (3)                                      | $-54.3^{b}$                                                                   | $9.5^{b}$                                |                    | 16              |
| cis-cinnamate                                                         | -28.3                                            | 3.879                                                      |                     | 9                   | GTP (2)                                      | $-34^{b}$                                                                     | 0.044                                    |                    | 16              |
|                                                                       | -31.0                                            | 3.128°                                                     |                     | 15                  | GTP (3)                                      | -49.8<br>-64.1                                                                | 3.044                                    |                    | 16              |
| citrate (1)                                                           | FO 4                                             | 4.761°                                                     |                     | 15<br>15            | GTP (4)<br>GTP (5)                           | -64.1<br>-78.4                                                                | $7.158$ $9.5^{b}$                        |                    | 16<br>16        |
| citrate (1)<br>citrate (2)                                            | -53.4<br>-70.8                                   |                                                            |                     |                     | OII (U)                                      | 10.4                                                                          |                                          |                    |                 |
| citrate (1)<br>citrate (2)<br>citrate (3)                             | -70.8                                            | 6.3 <del>96</del> ª                                        |                     |                     | HEPES                                        | -21.8                                                                         |                                          | 0.00545            | 32              |
| citrate (1) citrate (2) citrate (3) CMP (1)                           | -70.8<br>-23.7                                   | 6.396°<br>4.468                                            |                     | 16                  | HEPES<br>HEPPSO                              | -21.8<br>-22.0                                                                | 7.51<br>7.51                             | 0.00545<br>0.00520 | $\frac{32}{32}$ |
|                                                                       | -70.8                                            | 6.3 <del>96</del> ª                                        |                     |                     |                                              |                                                                               | 7.51                                     |                    | 32<br>15        |
| citrate (1) citrate (2) citrate (3) CMP (1) CMP (2) crotonate CTP (2) | -70.8<br>-23.7<br>-40.6<br>-33.5<br>-36.0        | 6.396 <sup>a</sup><br>4.468<br>6.705<br>4.705 <sup>a</sup> |                     | 16<br>16<br>9<br>16 | HEPPSO<br>hippurate (1)<br>hippurate (2)     | -22.0<br>-25.9<br>-55.3                                                       | 7.51<br>7.51<br>2.5<br>7.346             |                    | 32<br>15<br>15  |
| citrate (1) citrate (2) citrate (3) CMP (1) CMP (2) crotonate         | -70.8<br>-23.7<br>-40.6<br>-33.5                 | 6.396°<br>4.468<br>6.705                                   |                     | 16<br>16<br>9       | HEPPSO<br>hippurate (1)                      | -22.0<br>-25.9                                                                | 7.51<br>7.51<br>2.5                      |                    | 32<br>15        |

| TABLE I (Continued)                    |                          |                    |              |          |                                                                  |                                    |                    |              |          |
|----------------------------------------|--------------------------|--------------------|--------------|----------|------------------------------------------------------------------|------------------------------------|--------------------|--------------|----------|
|                                        | $u, 10^{-9} \text{ m}^2$ |                    |              |          |                                                                  | u, 10 <sup>-9</sup> m <sup>2</sup> |                    |              |          |
| substance                              | $V^{-1} s^{-1}$          | р $K_\mathtt{a}$   | <i>I</i> , M | ref      | substance                                                        | $V^{-1} s^{-1}$                    | р $K_\mathtt{a}$   | <i>I</i> , M | ref      |
| 3-hydroxybutyrate                      | -34.3                    | 4.519a             |              | 9        | phenylacetate                                                    | -31.5                              | 4.351              |              | 15       |
| 4-hydroxybutyrate                      | -34.4                    | 4.7214             |              | 9        | F                                                                | -29.2                              |                    | ?            | 13       |
| m-hydroxycinnamate                     | -27.0                    | 4.3974             |              | 9        |                                                                  | -27.8                              |                    | 0.01         | 8        |
| o-hydroxycinnamate                     | -27.0                    | $4.613^{a}$        |              | 9        | phenylalanine                                                    | -26.9                              | 9.262              |              | 17       |
| p-hydroxycinnamate                     | -27.0                    | $4.678^{a}$        |              | 9        | 4-phenylbutyrate                                                 | -24.7                              | $4.757^{a}$        |              | 9        |
| 2-hydroxyisobutyrate                   | -33.5                    | $3.971^{a}$        |              | 9        | 2-phenylpropionate                                               | -26.5                              | $2.237^{a}$        |              | 9        |
| p-hydroxyphenylacetate                 | -26.9                    | $3.171^{a}$        |              | 9        | 3-phenylpropionate                                               | -26.5                              | $4.664^{a}$        |              | 9        |
| hydroxyproline                         | -30.1                    | 9.816              |              | 17       | phosphate (1)                                                    | -34.1                              | $2.148^{a}$        |              | 15       |
| hypophosphite                          | -45.1                    | 1.1                |              | 16       | phosphate (2)                                                    | -58.3                              | $7.22^{a}$         |              | 15       |
|                                        | -43.3                    | $1.230^{a}$        | 0.01         | 8        | phosphate (3)                                                    | $-71.5^{a}$                        | $11.5^{a}$         |              | 15       |
| IDP (2)                                | -38.3                    |                    |              | 16       | phosphite (1)                                                    | -40.0                              | 1.3                |              | 16       |
| IDP (3)                                | -54.2                    | 7.165              |              | 16       | phosphite (2)                                                    | -65.9                              | 7.086              |              | 16       |
| IDP (4)                                | $-70.2^{b}$              | $9.5^{b}$          |              | 16       | o-phthalate (1)                                                  | -35.3                              | $2.95^a$           |              | 15       |
| iodate                                 | -41.9                    | 0.772°             |              | 15       | o-phthalate (2)                                                  | -52.7                              | $5.408^{a}$        | •            | 15       |
|                                        | -39.7                    |                    | 0.01         | 8        |                                                                  | -52.5                              |                    | ?            | 13       |
| TMD (1)                                | -40.3                    | 0.555              | ?            | 13       | • .                                                              | -45.4                              | 0.500              | 0.015        | 8        |
| IMP (1)                                | -22.6                    | 2.575              |              | 16       | picrate                                                          | -31.7                              | 0.7084             |              | 15       |
| IMP (2)                                | -38.2                    | 6.545              |              | 16       |                                                                  | -30.5                              | 4 5000             | ?            | 13       |
| IMP (3)                                | -53.9 <sup>b</sup>       | 9.5 <sup>b</sup>   |              | 16       | pimelate (1)                                                     | -27.6                              | 4.509 <sup>a</sup> |              | 15       |
| isoleucine                             | -26.7<br>-24.7           | 9.765<br>3.635°    |              | 17       | pimelate (2)<br>pivalate                                         | -48.4                              | 5.312°             |              | 15       |
| o-isopropylbenzoate                    | -24.7<br>-24.7           | 4.354°             |              | 9<br>9   |                                                                  | -31.6                              | 5.007              |              | 15       |
| <i>p</i> -isopropylbenzoate<br>ITP (3) | -24.7<br>-52.8           | 4.304              |              | 9<br>16  | proline<br>propionate                                            | −25.4<br>−36.9                     | 10.640<br>4.779    |              | 17<br>15 |
| ITP (4)                                | -65.0                    | 7.2                |              | 16       | propionate                                                       | -36.9<br>-36.1                     | 4.779              | 9            | 13       |
| ITP (4)<br>ITP (5)                     | -05.0<br>-77.3           | $9.5^{b}$          |              | 16       |                                                                  | -36.1<br>-34.2                     |                    | 0.01         | 8        |
| $\alpha$ -ketoglutarate (1)            | -77.5<br>-37.5           | 2.800              |              | 15       | pyrazine-2,3-dicarboxylate (1)                                   | -34.2<br>-36.6                     | 1ª                 | 0.01         | 15       |
| $\alpha$ -ketoglutarate (2)            | -59.0                    | 5.272              |              | 15       | pyrazine-2,3-dicarboxylate (1)<br>pyrazine-2,3-dicarboxylate (2) | -55.7                              | 4.308              |              | 15       |
| lactate                                | -35.8                    | 3.854              |              | 15       | pyrazole-3,5-dicarboxylate (1)                                   | -35.7<br>-25.4                     | 1ª                 |              | 15       |
| iactate                                | -33.7                    | 0.004              | 0.01         | 8        | pyrazole-3,5-dicarboxylate (1)                                   | -56.9                              | 3.894              |              | 15       |
| leucine                                | -26.4                    | 9.728              | 0.01         | 17       | 2-pyridinecarboxylate                                            | -29.6                              | 0.034              | 0.01         | 8        |
| leucylglycine                          | -25.0                    | 8.269              |              | 18       | 3-pyridinecarboxylate                                            | -30.6                              |                    | 0.01         | 8        |
| leucylleucine                          | -21.6                    | 8.397              |              | 18       | 4-pyridinecarboxylate                                            | -30.6                              |                    | 0.01         | 8        |
| leucylphenylalanine                    | -21.8                    | 8.413              |              | 18       | pyrophosphate (1)                                                | -29.0                              | 1                  | 0.01         | 16       |
| L-leucyl-L-tyrosine (1)                | -18.2                    | 7.828              |              | 18       | pyrophosphate (2)                                                | -57.9                              | 1.9                |              | 16       |
| L-leucyl-L-tyrosine (2)                | -36.4                    | 10.065             |              | 18       | pyrophosphate (3)                                                | -76.4                              | 6.6                |              | 16       |
| leucylvaline                           | -22.3                    | 8.364              |              | 18       | pyrophosphate (4)                                                | -89.4                              | 9.6                |              | 16       |
| levulinate                             | -33.4                    | 4.594              |              | 15       | pyruvate                                                         | -42.3                              | $2.490^{a}$        |              | 9        |
| lysine                                 | -26.4                    | 10.79              |              | 17       | salicylate                                                       | -35.3                              | 2.937              |              | 15       |
| maleate (1)                            | -42.5                    | 1.943ª             |              | 15       | 24                                                               | -33.9                              | 2.00.              | ?            | 13       |
| maleate (2)                            | -62.0                    | $6.225^{a}$        |              | 15       | selenate (1)                                                     | -41.0                              | 0.000ª             | •            | 9        |
| malate (1)                             | -34.9                    | $3.46^{a}$         |              | 15       | selenate (2)                                                     | -80.5                              | $2.050^{a}$        |              | 9        |
| malate (2)                             | -58.5                    | $5.05^{a}$         |              | 15       | selenite (1)                                                     | -41.2                              | $2.620^{a}$        |              | 9        |
|                                        | -51.6                    |                    | 0.015        | 8        | selenite (2)                                                     | -60.5                              | 8.450°             |              | 9        |
| malonate (1)                           | -42.4                    | $2.847^{a}$        |              | 15       | serine                                                           | -33.6                              | 9.302              |              | 17       |
| malonate (2)                           | -65.4                    | $5.696^{a}$        |              | 15       | sorbate                                                          | -27.3                              | $4.770^{a}$        | 0.01         | 8        |
|                                        | -62.2                    |                    | ?            | 13       | succinate (1)                                                    | -35.2                              | $4.207^{a}$        |              | 15       |
| mandelate                              | -28.3                    | $3.411^{a}$        |              | 9        | succinate (2)                                                    | -57.5                              | $5.638^{a}$        |              | 15       |
| MES                                    | -26.8                    | 6.13               | 0.005        | 32       |                                                                  | -61.5                              |                    | ?            | 13       |
|                                        | -28.0                    | $6.095^{a}$        |              | 9        | sulfamate                                                        | -50.3                              | $-2^a$             |              | 15       |
| methacrylate                           | -36.6                    | 4.458              |              | 15       | sulfamidate                                                      | -45.5                              |                    | 0.01         | 8        |
| methionine                             | -29.3                    | 9.344              |              | 17       | sulfanilate                                                      | -33.7                              | 3.127              |              | 15       |
| m-methoxybenzoate                      | -28.3                    | $4.088^{a}$        |              | 9        | sulfate (1)                                                      | $-45^{a}$                          | -2ª                |              | 15       |
| o-methoxybenzoate                      | -28.3                    | $4.094^{a}$        |              | 9        | sulfate (2)                                                      | -79.5                              | $1.921^{a}$        |              | 15       |
| MOPS                                   | -24.4                    | 7.16               | 0.006        | 32       |                                                                  | -71.6                              |                    | 0.015        | 8        |
| MOPSO                                  | -23.8                    | 6.79               | 0.0062       | 32       | sulfite (1)                                                      | -49.3                              | $1.78^{a}$         |              | 15       |
| naphthalene-2-sulfonate                | -31.3                    | -2ª                |              | 15       | sulfite (2)                                                      | -67.1                              | 6.991°             |              | 15       |
| nicotinate                             | -34.6                    | 4.819              |              | 15       | TAPS                                                             | -25.0                              | $8.300^{a}$        |              | 9        |
| nitrate                                | -75.4                    | $-1.37^{a}$        | •            | 15       | tartrate (1)                                                     | -34.6                              | 3.036°             |              | 15       |
|                                        | -68.3                    |                    | ?            | 13       | tartrate (2)                                                     | -60.5                              | 4.366°             |              | 15       |
|                                        | -69.7                    |                    | 0.01         | 8        | tartronate (1)                                                   | -38.9                              | 2.366°             |              | 15       |
| nitrite                                | -68.8                    |                    | ?            | 13       | tartronate (2)                                                   | -67.8                              | 4.735°             |              | 15       |
|                                        | -69.6                    | 0.004              | 0.01         | 8        | taurine                                                          | -37.9                              | 9.182              |              | 17       |
| p-nitrobenzoate                        | -32.1                    | 3.391              | 0.01         | 15       | terephthalate (1)                                                | -28.0                              | 3.540°             |              | 9        |
| <i>m</i> -nitrobenzoate ornithine      | -29.3                    | 10 755             | 0.01         | 8        | terephthalate (2)                                                | -53.0                              | 4.460°             | 0.00500      | 9        |
| ornitnine<br>orotate                   | -28.4<br>-32.9           | $10.755 \\ 2.519$  |              | 17       | TES                                                              | -22.4<br>75.6                      | 7.43               | 0.00566      | 32       |
| orotate<br>oxalate (1)                 | -32.9<br>-44.9           | 2.519<br>1.271°    |              | 15<br>15 | tetrametaphosphate (3)                                           | -75.6<br>-04.7                     | 0.77               |              | 16       |
| oxalate (1)                            | -44.9<br>-74.6           | 4.266 <sup>a</sup> |              | 15<br>15 | tetrametaphosphate (4)                                           | -94.7<br>-68.0                     | 2.74               | ?            | 16       |
| Undidic (2)                            | -74.6<br>-73.4           | 7.400              | ?            | 13       | thiocyanate                                                      | -68.0<br>-64.2                     |                    |              | 13       |
| pelargonate                            | -73.4 $-26.7$            | 4.678              |              | 13<br>15 | threonine                                                        | -64.2<br>-30.9                     | 9.200              | 0.01         | 8<br>17  |
| perchlorate                            | -20.7<br>-70.0           | $-2^a$             |              | 15<br>15 | m-toluate                                                        | -30.9<br>-29.1                     | 9.200<br>4.272°    |              | 17<br>9  |
| poromorado                             | -70.0<br>-71.9           | _                  | ?            | 13       | o-toluate                                                        | -29.1<br>-29.1                     | 3.908 <sup>a</sup> |              | 9        |
|                                        | -65.8                    |                    | 0.01         | 8        | p-toluate                                                        | -29.1 $-29.1$                      | 4.373°             |              | 9        |
| periodate                              | -51.8                    |                    | 0.01         | 8        | p-toluate<br>p-toluenesulfonate                                  | -29.1<br>-29.3                     | 4.010              | 0.01         | 8        |
| permanganate                           | -59.7                    |                    | 0.01         | 8        | trichloroacetate                                                 | -36.2                              | 0.635°             | 0.01         | 15       |
| phenoxyacetate                         | -27.8                    | $3.171^{a}$        |              | 9        |                                                                  | -37.9                              | 2.000              | ?            | 13       |
| -                                      |                          |                    |              |          |                                                                  |                                    |                    | •            |          |

TABLE I (Continued)

|                         | u, 10 <sup>-9</sup> m <sup>2</sup> |                   |              |     |              | u, 10 <sup>-9</sup> m <sup>2</sup> |                  |              |     |
|-------------------------|------------------------------------|-------------------|--------------|-----|--------------|------------------------------------|------------------|--------------|-----|
| substance               | $V^{-1} s^{-1}$                    | $\mathrm{p}K_{a}$ | <i>I</i> , M | ref | substance    | $V^{-1} s^{-1}$                    | р $K_\mathtt{a}$ | <i>I</i> , M | ref |
|                         | -33.1                              |                   | 0.01         | 8   | tyrosine (2) | -40.0                              | 10.189           |              | 17  |
| trimetaphosphate (1)    | -28.9                              | $-2.00^{a}$       |              | 9   | UDP (2)      | -39.4                              |                  |              | 16  |
| trimetaphosphate (2)    | -57.8                              | $-1.00^a$         |              | 9   | UDP (3)      | -56.0                              | 7.088            |              | 16  |
| trimetaphosphate (3)    | -87.6                              | $2.050^{a}$       |              | 9   | UDP (4)      | -72.6                              | $9.5^{b}$        |              | 16  |
|                         | -87.7                              | 2.05              |              | 16  | UMP (1)      | -23.4                              | 2.499            |              | 16  |
| 2,4,6-trimethylbenzoate | -24.7                              | $3.437^{a}$       |              | 9   | UMP (2)      | -39.7                              | 6.529            |              | 16  |
| triphosphate (2)        | $-48^{b}$                          | 1.1               |              | 16  | UMP (3)      | $-56^{b}$                          | $9.5^{b}$        |              | 16  |
| triphosphate (3)        | -74.7                              | 2.3               |              | 16  | UTP (3)      | -54.9                              |                  |              | 16  |
| triphosphate (4)        | -89.3                              | 6.5               |              | 16  | UTP (4)      | -66.8                              | 7.1              |              | 16  |
| triphosphate (5)        | -113.0                             | 9.24              |              | 16  | UTP (5)      | $-78.8^{b}$                        | $9.5^{b}$        |              | 16  |
| tryptophan              | -25.4                              | 9.594             |              | 17  | n-valerate   | -30.3                              |                  | ?            | 13  |
| tungstate (2)           | -74.6                              |                   | ?            | 13  | valine       | -28.4                              | 9.710            |              | 17  |
| tyrosine (1)            | -20.0                              | 9.099             |              | 17  | vanilate     | -27.1                              | $4.523^{a}$      |              | 9   |

<sup>o</sup>Data taken from the literature.<sup>33,34</sup> <sup>b</sup>Data estimated by authors of the respective paper. ACES, BES, HEPES, HEPPSO, MES, MOPS, MOPSO, TAPS, and TES are abbreviations of Good's buffers; ADP, AMP, ATP, CDP, CMP, CTP, GDP, GMP, GTP, IDP, IMP, ITP, UDP, UMP, and UTP are abbreviations of nucleotides.

acids,<sup>23</sup> complexes of acetic and  $\alpha$ -hydroxyisobutyric acid with lanthanoids,<sup>24</sup> and complexes of hydroxy-carboxylic acids.<sup>25</sup>

In the papers,  $^{24,25}$  also the coordination numbers of complexes were determined. Also here the best-fit method of calculation was used. Since the calculation can be performed only for integer values of coordination numbers, it was necessary to estimate its noninteger value from two neighboring fits. In this way, the coordination numbers of complexes of Ba, Sr, Ca, Mg, Cd, Co, Zn, and Ni with glycolate,  $\alpha$ -hydroxybutyrate,  $\beta$ -hydroxybutyrate,  $\alpha$ -hydroxybutyrate, and lactate were determined.  $^{25}$ 

The same authors also determined the ion-pair formation constants of phosphorus oxoacids with histidine.<sup>26</sup>

The method of calculation of ionic mobilities and dissociation constants of monovalent ions by Beckers<sup>27</sup> is based on the idea that to a given value of zone conductivity corresponds an infinite number of pairs of  $u_i$  and  $pK_a$  values. If these pairs are plotted in a  $u_i$ - $pK_a$  coordinate system, for a given value of conductivity and given electrolyte system a curve, called an isoconductor, is obtained. In another electrolyte system, the zone of a substance of a given  $u_i$  and  $pK_a$  may have another conductivity and thus another corresponding isoconductor. The intersection of two such isoconductors then determines the proper values of  $u_i$  and  $pK_a$  of the given substance.

A paper<sup>28</sup> on the evaluation of limiting ionic mobilities and dissociation constants presented a program including temperature and ionic strength correction of mobilities and dissociation constants. The input data for the calculation were thermostating temperature, thermal resistance coefficients of the column, driving current, the resistance capacity of the conductivity detection cell, the capillary cross-section, the pH of the leading electrolyte and its conductivity, the chart speed, the ionic mobilities and concentrations of the leading ion and the counterion in the leading electrolyte, and the coefficients of the temperature dependence of the dissociation constant of the counterion.

A simplified theory for the calculation of stability constants of neutral ligand complexes was presented by Stover<sup>29,30</sup> with the aim of describing the separation of alkali metals with neutral 18-crown-6 ether. The values of effective mobilities of these metal cations obtained from conductivity detection data served for the calcu-

lation of the respective stability constants.

A paper by Jokl et al.<sup>31</sup> was aimed at the determination of ionic mobilities and dissociation constants of cations of pharmaceutically interesting substances. The method described here is based on the calculation from the linearized dependence of effective mobility on pH. The respective zone pH is calculated from the known composition of the leading electrolyte and from the  $u_i$  and  $pK_a$  values of the given substance. As input parameters for the iteration procedure the following are necessary: two different effective mobilities measured in two electrolyte systems, the parameters of the two electrolyte systems, and an estimate of  $u_i$  and  $pK_a$ .

## C. Evaluation of $u_i$ and p $K_a$ from Simultaneous Measurement of $\bar{u}_i$ and p $H_i$

In the previous section, we described the methods of obtaining  $u_i$  and  $pK_a$  values based on calculation of zone properties from the known composition of the leading electrolyte. The values obtained in such a way involve naturally the bias of the input values, including the parameters of the leading electrolyte. From the viewpoint of accuracy and precision, use of specialized apparatus<sup>32</sup> that allows direct micropreparative measurement of zone pH is preferable. The needed pair of  $\bar{u}_i$  and  $pK_i$  values is measured experimentally, and from these it is easy to evaluate the respective  $u_i$  and  $pK_i$  values. The relative bias of the method is <3% in the determination of mobilities and 0.05 unit in the determination of  $pK_i$ .

#### V. Survey of Data

We present a list of data for anions in water (Table I) and methanol (Table II), for cations in water (Table III) and mixed water/methanol/dimethyl sulfoxide medium (Table IV), and for metal-ligand complexes (Tables V and VI). The data are corrected to zero ionic strength, unless another value of ionic strength is given in the column labeled "I".

#### VI. Precision and Accuracy of the Methods

The reproducibility of the resulting values of  $u_i$  and  $pK_a$  is strongly affected by the reproducibility of the input experimental values. For potential-gradient

TABLE II. Mobilities and Apparent p $K_a$  Values (p $K_a^*$ ) of Anions in Methanol<sup>21</sup>

|                              | u, 10 <sup>-9</sup> m <sup>2</sup> |        |
|------------------------------|------------------------------------|--------|
| substance                    | $V^{-1} s^{-1}$                    | $pK_a$ |
| acetate                      | -43.8                              | 8.472  |
| acrylate                     | -43.5                              | 8.134  |
| p-anisate                    | -38.9                              | 8.669  |
| benzoate                     | -41.4                              | 8.299  |
| bromate                      | -56.6                              |        |
| bromide                      | -58.3                              |        |
| bromoacetate                 | -45.3                              | 6.716  |
| 2-bromopropionate            | -43.1                              | 7.002  |
| 5-bromosalicylate            | -44.4                              |        |
| butyrate                     | -41.6                              | 8.748  |
| caproate                     | -39.6                              | 8.767  |
| caprylate                    | -38.4                              | 8.760  |
| chlorate                     | -63.9                              |        |
| chloroacetate                | -45.6                              | 6.636  |
| m-chlorobenzoate             | -41.3                              | 7.780  |
| o-chlorobenzoate             | -40.0                              | 7.182  |
| p-chlorobenzoate             | -40.9                              | 7.978  |
| 2-chloropropionate           | -43.9                              | 6.876  |
| cinnamate                    | -38.5                              | 8.29   |
| crotonate                    | -41.7                              | 8.587  |
| dehydroacetate               | -40.8                              | 8.77   |
| 2,3-dibromobutyrate          | -41.1                              | 6.643  |
| 2,3-dibromopropionate        | -42.5                              | 6.96   |
| dichloroacetate              | -47.1                              |        |
| enanthate                    | -39.0                              | 8.75   |
| fluoride                     | -41.6                              |        |
| fluoroacetate                | -45.7                              | 4.3    |
| formate                      | -48.4                              | 7.064  |
| glucuronate                  | -32.6                              | 7.33   |
| glutamate                    | -32.2                              | 7.884  |
| glycerate                    | -41.0                              | 7.396  |
| glycolate                    | -45.0                              | 7.549  |
| 2-hydroxybutyrate            | -42.9                              | 7.724  |
| 3-hydroxybutyrate            | -41.4                              | 8.32   |
| 2-hydroxyisobutyrate         | -43.2                              | 7.87   |
| iodate                       | -40.9                              | 7.149  |
| iodide                       | -65.6                              |        |
| iodoacetate                  | -43.6                              | 7.15   |
| isovalerate                  | -41.7                              | 8.83   |
| lactate                      | -43.8                              | 7.749  |
| levulinate                   | -41.2                              | 8.58   |
| mandelate                    | -40.2                              | 7.41   |
| MES                          | -40.6                              | 7.410  |
| methacrylate                 | -42.8                              | 8.610  |
| 2-naphthalenesulfonate       | -41.3                              |        |
| nicotinate                   | -40.3                              | 7.334  |
| nitrate                      | -62.9                              | =      |
| nitrite                      | -57.6                              | 7.12   |
| palmitate                    | -32.6                              | 8.79   |
| pelargonate                  | -37.1                              | 8.75   |
| picrate                      | -49.3                              | 0.50   |
| propionate                   | -43.4                              | 8.78   |
| pyruvate                     | -47.4                              | 7.649  |
| salicylate                   | -45.1                              | 6.728  |
| sorbate                      | -40.2                              | 8.59   |
| sulfosalicylate              | -45.3                              | 6.663  |
| thiocyanate                  | -64.3                              |        |
| trichloroacetate             | -47.3                              |        |
| trifluoroacetate<br>valerate | -52.9                              |        |
| TOLOMOTO                     | -40.8                              | 8.754  |

measurements, the reproducibility of the  $R_{\rm E}$  values by Hirokawa et al. <sup>15</sup> lies between  $\pm 0.02$  and  $\pm 0.05$  unit; the average relative standard deviation (rsd) of the relative effective mobilities by Pospichal et al.<sup>32</sup> was 0.55%. The average rsd of the apparent mobility by Carchon and Eggermont<sup>13</sup> was 1.2%. The rsd of the relative step heights of potential-gradient measurements by Kenndler et al.<sup>12</sup> was 2%; the average rsd of direct mobility measurement was 0.4%. For conductometric detection, Everaerts et al. give a precision of the relative step heights of better than 4%. It can be concluded from

| substance 6-alanine 4-aminoantipyrine p-aminobenzoic acid e-aminophenazone ammediol ammonium n-amylammonium aniline arginine benzylammonium n-butylammonium di-n-butylammonium diethanolamine diethylammonium diethylammonium diethylammonium di-n-propylammonium di-n-propylammonium ethylammonium di-n-propylammonium di-n-propylammonium di-n-propylammonium di-n-propylammonium di-n-propylammonium di-n-propylammonium ethylammonium ethylammon | 10 <sup>-9</sup> m<br>V <sup>-1</sup> s <sup>-1</sup><br>+37.5<br>+25.0<br>+32.3<br>+29.8<br>+30.0<br>+24.2<br>+32.7<br>+26.9<br>+23.6<br>+35.6<br>+39.0<br>+35.8<br>+34.6<br>+34.0<br>+36.8<br>+34.6<br>+37.9<br>+36.8<br>+34.6<br>+34.9<br>+44.3<br>+36.8<br>+37.9<br>+36.8<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.9<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0                                                                                                                                                                                                                                                                                                                                                                                                                            | pK <sub>a</sub> 3.552 4.41 2.38 4.374 4.44 5.18 8.78 <sup>a</sup> 9.25 <sup>a</sup> 4.67 8.919 9.33 10.61 <sup>a</sup> 4.17 4.89 4.848 4.89 10.66 11.25 <sup>a</sup> 11.04 <sup>a</sup> 10.73 <sup>a</sup> 11.00 <sup>a</sup> 9.498 <sup>a</sup> 10.70 <sup>a</sup> | 0.01 ? 0.0068 ? 0.01 0.01 ? ?                            | reff 16 31 15 16 131 31 17 8 12 14 12 31 16 12 16 12 16 12 17 8 12 17 8                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4-aminoantipyrine p-aminobenzoic acid e-aminophenazone ammediol ammonium n-amylammonium aniline arginine benzylammonium n-butylammonium di-n-butylammonium diethanolamine diethylammonium diethylammonium di-n-propylammonium ethylammonium di-n-propylammonium di-n-propylammonium di-n-propylammonium di-n-propylammonium di-n-propylammonium di-n-propylammonium di-n-propylammonium ethylammonium ethy | +25.0<br>+32.3<br>+29.8<br>+30.0<br>+24.2<br>+32.7<br>+72.2<br>+32.4<br>+38.7<br>+26.9<br>+23.6<br>+34.6<br>+31.7<br>+20.8<br>+34.6<br>+31.7<br>+20.8<br>+33.1<br>+33.6<br>+37.9<br>+53.1<br>+37.9<br>+53.1<br>+31.6<br>+44.3<br>+39.4<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.41<br>2.38<br>4.374<br>4.44<br>5.18<br>8.78°<br>9.25°<br>4.67<br>8.919<br>9.33<br>10.61°<br>4.17<br>4.89<br>4.848<br>4.89<br>10.66<br>11.25°<br>11.04°<br>10.73°<br>11.00°<br>9.498°                                                                              | ?<br>0.001<br>?<br>0.0068<br>?<br>0.01<br>0.01<br>?<br>? | 31<br>15<br>16<br>31<br>31<br>17<br>8<br>12<br>14<br>31<br>17<br>8<br>16<br>14<br>12<br>31<br>31<br>16<br>32<br>16<br>12<br>18<br>8<br>8<br>8<br>12<br>17<br>17<br>17<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18 |
| 4-aminoantipyrine p-aminobenzoic acid e-aminophenazone ammediol ammonium n-amylammonium aniline arginine benzylammonium n-butylammonium di-n-butylammonium diethanolamine diethylammonium diethylammonium di-n-propylammonium ethylammonium di-n-propylammonium di-n-propylammonium di-n-propylammonium di-n-propylammonium di-n-propylammonium di-n-propylammonium di-n-propylammonium ethylammonium ethy | +25.0<br>+32.3<br>+29.8<br>+30.0<br>+24.2<br>+32.0<br>+27.7<br>+72.2<br>+32.4<br>+38.7<br>+26.9<br>+23.6<br>+34.6<br>+31.7<br>+20.8<br>+34.6<br>+31.7<br>+20.8<br>+33.1<br>+33.6<br>+37.9<br>+53.1<br>+37.9<br>+53.1<br>+31.6<br>+44.3<br>+39.4<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.41<br>2.38<br>4.374<br>4.44<br>5.18<br>8.78°<br>9.25°<br>4.67<br>8.919<br>9.33<br>10.61°<br>4.17<br>4.89<br>4.848<br>4.89<br>10.66<br>11.25°<br>11.04°<br>10.73°<br>11.00°<br>9.498°                                                                              | ?<br>0.001<br>?<br>0.0068<br>?<br>0.01<br>0.01<br>?<br>? | 31<br>15<br>16<br>31<br>31<br>17<br>8<br>12<br>14<br>31<br>17<br>8<br>16<br>14<br>12<br>31<br>31<br>16<br>32<br>16<br>12<br>18<br>8<br>8<br>8<br>12<br>17<br>17<br>17<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18 |
| p-aminobenzoic acid e-aminocaproic acid aminophenazone ammediol ammonium n-amylammonium aniline arginine benzylammonium n-butylammonium di-chloroaniline chlorodiazepoxide creatinine cyclohexylammonium diethylammonium diethylammonium diethylammonium ediethylammonium di-n-propylammonium ethanolamine ethylammonium ethylammoni | +32.3<br>+29.8<br>+30.0<br>+24.2<br>+32.0<br>+27.7<br>+72.2<br>+32.4<br>+38.7<br>+26.9<br>+23.6<br>+35.8<br>+35.8<br>+34.0<br>+31.7<br>+20.8<br>+36.8<br>+33.1<br>+33.6<br>+37.9<br>+53.1<br>+37.9<br>+53.1<br>+31.6<br>+44.3<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8<br>+39.8 | 2.38<br>4.374<br>4.44<br>5.18<br>8.78°<br>9.25°<br>4.67<br>8.919<br>9.33<br>10.61°<br>4.17<br>4.89<br>4.848<br>4.89<br>10.66<br>11.25°<br>11.04°<br>10.73°<br>11.00°<br>9.498°                                                                                      | ?<br>0.001<br>?<br>0.0068<br>?<br>0.01<br>0.01<br>?<br>? | 15<br>16<br>31<br>31<br>17<br>8<br>12<br>14<br>31<br>17<br>8<br>16<br>14<br>12<br>31<br>31<br>16<br>12<br>8<br>8<br>8<br>12<br>11<br>17<br>17<br>17<br>18<br>18<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19       |
| e-aminocaproic acid aminophenazone ammediol ammonium n-amylammonium aniline arginine benzylammonium n-butylammonium d-chloroaniline chlorodiazepoxide creatinine cyclohexylammonium di-n-butylammonium diethylammonium diethylammonium ethylammonium di-n-propylammonium ethylammonium eth | +29.8<br>+30.0<br>+24.2<br>+32.0<br>+27.7<br>+72.2<br>+32.4<br>+38.7<br>+26.9<br>+33.6<br>+34.6<br>+31.7<br>+20.8<br>+36.1<br>+33.6<br>+27.2<br>+30.6<br>+34.1<br>+37.9<br>+53.1<br>+44.8<br>+34.6<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.374<br>4.44<br>5.18<br>8.78°<br>9.25°<br>4.67<br>8.919<br>9.33<br>10.61°<br>4.17<br>4.89<br>4.848<br>4.89<br>10.66<br>11.25°<br>11.04°<br>10.73°<br>11.00°<br>9.498°                                                                                              | ?<br>0.001<br>?<br>0.0068<br>?<br>0.01<br>0.01<br>?<br>? | 16<br>31<br>31<br>17<br>8<br>12<br>14<br>31<br>17<br>8<br>16<br>14<br>12<br>31<br>31<br>16<br>32<br>16<br>12<br>18<br>18<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19                                              |
| aminophenazone ammediol  ammonium n-amylammonium aniline arginine  benzylammonium n-butylammonium 4-chloroaniline chlorodiazepoxide creatinine  cyclohexylammonium di-n-butylammonium diethylammonium diethylammonium ethylammonium di-n-propylammonium ethanolamine ethylammonium ethylam | +30.0<br>+24.2<br>+32.0<br>+27.7<br>+72.2<br>+32.4<br>+26.9<br>+23.6<br>+35.8<br>+34.6<br>+39.0<br>+31.7<br>+20.8<br>+36.3<br>+36.4<br>+37.9<br>+53.1<br>+37.9<br>+53.1<br>+34.6<br>+44.8<br>+39.4<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.44<br>5.18<br>8.78°<br>9.25°<br>4.67<br>8.919<br>9.33<br>10.61°<br>4.17<br>4.89<br>4.848<br>4.89<br>10.66<br>11.25°<br>11.04°<br>10.73°<br>11.00°<br>9.498°                                                                                                       | ?<br>0.001<br>?<br>0.0068<br>?<br>0.01<br>0.01<br>?<br>? | 31<br>31<br>17<br>8<br>12<br>14<br>31<br>17<br>8<br>16<br>14<br>12<br>31<br>31<br>16<br>32<br>16<br>12<br>18<br>18<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19                                                    |
| ammonium n-amylammonium amiline arginine benzylammonium n-butylammonium n-butylammonium n-butylammonium d-chlorodiazepoxide creatinine cyclohexylammonium di-n-butylammonium diethanolamine diethylammonium dethylammonium di-n-propylammonium ethanolamine ethylammonium ethanolamine ethylammonium di-n-propylammonium ethanolamine ethylammonium ethylammonium ethylammonium ethylammonium ethylammonium ethylammonium ethylammonium ethylammonium ethylamic acid guanidine hexamethylenetetramine n-hexylammonium histidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +24.2<br>+32.0<br>+27.7<br>+72.2<br>+32.4<br>+38.7<br>+26.6<br>+35.8<br>+34.6<br>+39.0<br>+31.7<br>+20.8<br>+33.6<br>+33.6<br>+37.2<br>+30.6<br>+34.1<br>+37.9<br>+53.1<br>+44.8<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.18<br>8.78 <sup>a</sup><br>9.25 <sup>a</sup><br>4.67<br>8.919<br>9.33<br>10.61 <sup>a</sup><br>4.17<br>4.89<br>4.848<br>4.89<br>10.66<br>11.25 <sup>a</sup><br>11.04 <sup>a</sup><br>10.73 <sup>a</sup><br>11.00 <sup>a</sup><br>9.498 <sup>a</sup>               | ?<br>0.001<br>?<br>0.0068<br>?<br>0.01<br>0.01<br>?<br>? | 31<br>17<br>8<br>12<br>14<br>31<br>17<br>8<br>16<br>12<br>31<br>16<br>32<br>16<br>12<br>18<br>8<br>8<br>12<br>17                                                                                                                                    |
| ammediol  ammonium  n-amylammonium  aniline arginine  benzylammonium  n-butylammonium  4-chloroaniline chlorodiazepoxide creatinine  cyclohexylammonium  di-n-butylammonium  diethanolamine diethylammonium  dimethylammonium  dimethylammonium  ethanolamine ethylammonium  ethanolamine  ethylammonium  in-propylammonium  ethylammonium  ethylamic acid guanidine  hexamethylenetetramine  n-hexylammonium  histidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +32.0<br>+27.7<br>+72.2<br>+32.4<br>+38.7<br>+23.6<br>+35.8<br>+34.6<br>+39.0<br>+31.7<br>+20.8<br>+33.1<br>+33.6<br>+33.1<br>+37.9<br>+53.1<br>+37.9<br>+53.1<br>+34.6<br>+44.8<br>+34.6<br>+44.8<br>+39.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.78° 9.25° 4.67 8.919 9.33 10.61° 4.17 4.89 4.848 4.89 10.66 11.25° 11.04° 10.73° 11.00° 9.498°                                                                                                                                                                    | ?<br>0.001<br>?<br>0.0068<br>?<br>0.01<br>0.01<br>?<br>? | 17<br>8<br>12<br>14<br>31<br>17<br>8<br>16<br>14<br>12<br>31<br>31<br>16<br>32<br>16<br>12<br>8<br>8<br>12<br>12<br>12<br>17                                                                                                                        |
| ammonium n-amylammonium aniline arginine benzylammonium n-butylammonium 4-chloroaniline chlorodiazepoxide creatinine cyclohexylammonium di-n-butylammonium diethanolamine diethylammonium diethylammonium di-n-propylammonium ethanolamine ethylammonium thanolamine ethylammonium ethylam | +27.7<br>+72.2<br>+32.4<br>+38.7<br>+26.9<br>+35.8<br>+34.6<br>+39.0<br>+31.7<br>+20.8<br>+33.1<br>+33.6<br>+33.1<br>+37.9<br>+53.1<br>+37.9<br>+53.1<br>+34.6<br>+44.8<br>+39.4<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.25° 4.67 8.919 9.33 10.61° 4.17 4.89 4.848 4.89 10.66 11.25° 11.04° 10.73° 9.498°                                                                                                                                                                                 | ?<br>0.001<br>?<br>0.0068<br>?<br>0.01<br>0.01<br>?<br>? | 8 12 14 31 177 8 166 144 122 31 166 32 162 122 121 17                                                                                                                                                                                               |
| ammonium n-amylammonium aniline arginine benzylammonium n-butylammonium 4-chloroaniline chlorodiazepoxide creatinine cyclohexylammonium di-n-butylammonium diethanolamine diethylammonium ethanolamine ethylammonium ti-n-propylammonium ethanolamine ethylammonium ethanolamine ethylammonium ethylammo | +27.7<br>+72.2<br>+32.4<br>+38.7<br>+26.9<br>+35.8<br>+34.6<br>+39.0<br>+31.7<br>+20.8<br>+33.1<br>+33.6<br>+33.1<br>+37.9<br>+53.1<br>+37.9<br>+53.1<br>+34.6<br>+44.8<br>+39.4<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.25° 4.67 8.919 9.33 10.61° 4.17 4.89 4.848 4.89 10.66 11.25° 11.04° 10.73° 9.498°                                                                                                                                                                                 | ?<br>0.001<br>?<br>0.0068<br>?<br>0.01<br>0.01<br>?<br>? | 12<br>14<br>31<br>17<br>8<br>16<br>14<br>12<br>31<br>31<br>16<br>32<br>16<br>12<br>8<br>8<br>12<br>12<br>12<br>17                                                                                                                                   |
| ammonium n-amylammonium aniline arginine benzylammonium n-butylammonium 4-chloroaniline chlorodiazepoxide creatinine cyclohexylammonium di-n-butylammonium diethanolamine diethylammonium ethylammonium thanolamine ethylammonium ethylammonium ethylammonium thanolamine ethylammonium et | +72.2<br>+32.4<br>+38.7<br>+26.9<br>+23.6<br>+34.6<br>+39.0<br>+31.7<br>+20.8<br>+36.8<br>+33.1<br>+33.6<br>+27.2<br>+37.9<br>+53.1<br>+37.9<br>+53.1<br>+34.6<br>+44.3<br>+39.4<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.67<br>8.919<br>9.33<br>10.61°<br>4.17<br>4.89<br>4.848<br>4.89<br>10.66<br>11.25°<br>11.04°<br>10.73°<br>11.00°<br>9.498°                                                                                                                                         | ?<br>0.001<br>?<br>0.0068<br>?<br>0.01<br>0.01<br>?<br>? | 12<br>14<br>31<br>17<br>8<br>16<br>14<br>12<br>31<br>31<br>16<br>32<br>16<br>12<br>8<br>8<br>12<br>12<br>12<br>17                                                                                                                                   |
| n-amylammonium aniline arginine benzylammonium n-butylammonium 4-chloroaniline chlorodiazepoxide creatinine cyclohexylammonium diethanolamine diethylammonium diethylammonium ethylammonium ethylammon | +32.4<br>+38.7<br>+26.9<br>+23.6<br>+35.8<br>+35.8<br>+39.0<br>+31.7<br>+20.8<br>+36.8<br>+33.1<br>+33.6<br>+27.2<br>+37.9<br>+53.1<br>+31.6<br>+44.3<br>+39.4<br>+48.6<br>+44.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.67<br>8.919<br>9.33<br>10.61°<br>4.17<br>4.89<br>4.848<br>4.89<br>10.66<br>11.25°<br>11.04°<br>10.73°<br>11.00°<br>9.498°                                                                                                                                         | 0.001<br>?<br>0.0068<br>?<br>0.01<br>0.01<br>?<br>?      | 144<br>31<br>177<br>8 166<br>144<br>122<br>31<br>31<br>166<br>322<br>166<br>122<br>8 8<br>8 122<br>122<br>177                                                                                                                                       |
| aniline arginine benzylammonium n-butylammonium 4-chloroaniline chlorodiazepoxide creatinine cyclohexylammonium di-n-butylammonium diethanolamine diethylammonium ediethylammonium di-n-propylammonium ethanolamine ethylammonium ethanolamine ethylammonium implication ethylammonium eth | +38.7<br>+26.9<br>+23.6<br>+35.8<br>+34.6<br>+39.0<br>+20.8<br>+36.8<br>+33.1<br>+36.6<br>+27.2<br>+30.6<br>+34.1<br>+37.9<br>+53.1<br>+31.6<br>+44.3<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.919 9.33 10.61 <sup>a</sup> 4.17 4.89 4.848 4.89 10.66 11.25 <sup>a</sup> 11.04 <sup>a</sup> 10.73 <sup>a</sup> 11.00 <sup>a</sup> 9.498 <sup>a</sup>                                                                                                             | ?<br>0.0068<br>?<br>0.01<br>0.01<br>?<br>?               | 31<br>17<br>8<br>16<br>14<br>12<br>31<br>31<br>16<br>32<br>16<br>12<br>8<br>8<br>12<br>12<br>12<br>12                                                                                                                                               |
| benzylammonium n-butylammonium 4-chloroaniline chlorodiazepoxide creatinine cyclohexylammonium di-n-butylammonium diethanolamine diethylammonium diethylammonium ethylammonium ethylammo | +26.9<br>+23.6<br>+35.8<br>+34.6<br>+39.0<br>+31.7<br>+20.8<br>+33.1<br>+33.6<br>+27.2<br>+30.6<br>+34.1<br>+37.9<br>+53.1<br>+31.6<br>+44.3<br>+39.3<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.919 9.33 10.61 <sup>a</sup> 4.17 4.89 4.848 4.89 10.66 11.25 <sup>a</sup> 11.04 <sup>a</sup> 10.73 <sup>a</sup> 11.00 <sup>a</sup> 9.498 <sup>a</sup>                                                                                                             | ?<br>0.0068<br>?<br>0.01<br>0.01<br>?<br>?               | 177<br>8 16<br>14<br>12<br>31<br>31<br>16<br>32<br>16<br>12<br>8 8<br>12<br>12<br>12<br>17                                                                                                                                                          |
| benzylammonium n-butylammonium 4-chloroaniline chlorodiazepoxide creatinine cyclohexylammonium di-n-butylammonium diethanolamine diethylammonium dimethylammonium di-n-propylammonium ethanolamine ethylammonium ethanolamine ethylammonium in-hexylammonium hexamethylenetetramine n-hexylammonium histidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +23.6<br>+35.8<br>+34.6<br>+39.0<br>+31.7<br>+20.8<br>+36.8<br>+33.6<br>+27.2<br>+30.6<br>+34.1<br>+37.9<br>+53.1<br>+31.6<br>+44.8<br>+39.4<br>+48.6<br>+44.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.33<br>10.61 <sup>a</sup><br>4.17<br>4.89<br>4.848<br>4.89<br>10.66<br>11.25 <sup>a</sup><br>11.04 <sup>a</sup><br>10.73 <sup>a</sup><br>11.00 <sup>a</sup><br>9.498 <sup>a</sup>                                                                                  | ?<br>0.0068<br>?<br>0.01<br>0.01<br>?<br>?               | 8<br>16<br>14<br>12<br>31<br>31<br>16<br>32<br>16<br>12<br>8<br>8<br>12<br>12<br>12<br>17                                                                                                                                                           |
| benzylammonium n-butylammonium 4-chloroaniline chlorodiazepoxide creatinine cyclohexylammonium di-n-butylammonium diethanolamine diethylammonium di-n-propylammonium ethanolamine ethylammonium ethanolamine ethylammonium i-n-propylammonium ethylammonium ethylammonium ethylammonium i-n-hexylammonium i-n-hexylammonium i-n-hexylammonium i-n-hexylammonium i-n-hexylammonium i-n-hexylammonium i-n-hexylammonium i-n-hexylammonium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +35.8<br>+34.6<br>+39.0<br>+31.7<br>+20.8<br>+36.1<br>+33.6<br>+27.2<br>+30.6<br>+34.1<br>+37.9<br>+53.1<br>+31.6<br>+44.8<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.61° 4.17 4.89 4.848 4.89 10.66 11.25°  11.04° 10.73° 11.00° 9.498°                                                                                                                                                                                               | ?<br>0.0068<br>?<br>0.01<br>0.01<br>?<br>?               | 16<br>14<br>12<br>31<br>31<br>16<br>32<br>16<br>12<br>8<br>8<br>12<br>12<br>12<br>17                                                                                                                                                                |
| benzylammonium n-butylammonium 4-chloroaniline chlorodiazepoxide creatinine cyclohexylammonium di-n-butylammonium diethanolamine diethylammonium di-n-propylammonium ethanolamine ethylammonium ethanolamine ethylammonium i-n-propylammonium ethylammonium ethylammonium ethylammonium i-n-hexylammonium i-n-hexylammonium i-n-hexylammonium i-n-hexylammonium i-n-hexylammonium i-n-hexylammonium i-n-hexylammonium i-n-hexylammonium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +35.8<br>+34.6<br>+39.0<br>+31.7<br>+20.8<br>+36.1<br>+33.6<br>+27.2<br>+30.6<br>+34.1<br>+37.9<br>+53.1<br>+31.6<br>+44.8<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.61° 4.17 4.89 4.848 4.89 10.66 11.25°  11.04° 10.73° 11.00° 9.498°                                                                                                                                                                                               | ?<br>0.0068<br>?<br>0.01<br>0.01<br>?<br>?               | 16<br>14<br>12<br>31<br>31<br>16<br>32<br>16<br>12<br>8<br>8<br>12<br>12<br>12<br>17                                                                                                                                                                |
| n-butylammonium  4-chloroaniline chlorodiazepoxide creatinine  cyclohexylammonium di-n-butylammonium diethylammonium dimethylammonium di-n-propylammonium ethanolamine ethylammonium ethanolamine ethylammonium ethylammonium ethylammonium in-hexylammonium ehexamethylenetetramine n-hexylammonium histidine  imidazole lysine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +34.6<br>+39.0<br>+31.7<br>+20.8<br>+36.8<br>+33.6<br>+27.2<br>+30.6<br>+34.1<br>+37.9<br>+53.1<br>+31.6<br>+44.3<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.61° 4.17 4.89 4.848 4.89 10.66 11.25°  11.04° 10.73° 11.00° 9.498°                                                                                                                                                                                               | 0.0068<br>?<br>0.01<br>0.01<br>?<br>?                    | 14<br>12<br>31<br>31<br>16<br>32<br>16<br>12<br>8<br>8<br>12<br>12<br>12<br>17                                                                                                                                                                      |
| 4-chloroaniline chlorodiazepoxide creatinine  cyclohexylammonium di-n-butylammonium diethylammonium dimethylammonium di-n-propylammonium ethanolamine ethylammonium ethanolamine ethylammonium in-hexylammonium ethylenediammonium (1) glutamic acid guanidine hexamethylenetetramine n-hexylammonium histidine  imidazole lysine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +39.0<br>+31.7<br>+20.8<br>+36.8<br>+33.1<br>+33.6<br>+27.2<br>+30.6<br>+34.1<br>+37.9<br>+53.1<br>+31.6<br>+44.3<br>+39.3<br>+48.6<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.17<br>4.89<br>4.848<br>4.89<br>10.66<br>11.25°<br>11.04°<br>10.73°<br>11.00°<br>9.498°                                                                                                                                                                            | 0.0068<br>?<br>0.01<br>0.01<br>?<br>?                    | 12<br>31<br>31<br>16<br>32<br>16<br>12<br>8<br>12<br>12<br>12<br>12                                                                                                                                                                                 |
| 4-chloroaniline chlorodiazepoxide creatinine  cyclohexylammonium di-n-butylammonium diethanolamine diethylammonium dimethylammonium di-n-propylammonium ethanolamine ethylammonium ethylamic acid guanidine hexamethylenetetramine n-hexylammonium histidine  imidazole lysine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +31.7<br>+20.8<br>+36.8<br>+33.1<br>+33.6<br>+27.2<br>+30.6<br>+34.1<br>+37.9<br>+53.1<br>+31.6<br>+44.3<br>+39.3<br>+48.6<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.17<br>4.89<br>4.848<br>4.89<br>10.66<br>11.25°<br>11.04°<br>10.73°<br>11.00°<br>9.498°                                                                                                                                                                            | 0.0068<br>?<br>0.01<br>0.01<br>?<br>?                    | 31<br>16<br>32<br>16<br>12<br>8<br>12<br>12<br>12<br>12                                                                                                                                                                                             |
| chlorodiazepoxide creatinine  cyclohexylammonium di-n-butylammonium diethylammonium dimethylammonium di-n-propylammonium ethanolamine ethylammonium ethylammonium ethylammonium ethylammonium intylammonium ethylammonium ethylammonium ethylammonium istidine hexamethylenetetramine n-hexylammonium histidine  imidazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +20.8<br>+36.8<br>+33.1<br>+33.6<br>+27.2<br>+30.6<br>+34.1<br>+37.9<br>+53.1<br>+44.3<br>+39.3<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.89<br>4.848<br>4.89<br>10.66<br>11.25°<br>11.04°<br>10.73°<br>11.00°<br>9.498°                                                                                                                                                                                    | ?<br>0.01<br>0.01<br>?<br>?                              | 31<br>16<br>32<br>16<br>12<br>8<br>12<br>12<br>12<br>17                                                                                                                                                                                             |
| creatinine  cyclohexylammonium  di-n-butylammonium  diethanolamine  diethylammonium  dimethylammonium  di-n-propylammonium  ethanolamine  ethylammonium  (1)  glutamic acid  guanidine  hexamethylenetetramine  n-hexylammonium  histidine  imidazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +36.8<br>+33.1<br>+33.6<br>+27.2<br>+30.6<br>+34.1<br>+37.9<br>+53.1<br>+31.6<br>+44.3<br>+39.3<br>+48.6<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.848<br>4.89<br>10.66<br>11.25 <sup>a</sup><br>11.04 <sup>a</sup><br>10.73 <sup>a</sup><br>11.00 <sup>a</sup><br>9.498 <sup>a</sup>                                                                                                                                | ?<br>0.01<br>0.01<br>?<br>?                              | 16<br>32<br>16<br>12<br>8<br>12<br>12<br>12<br>17                                                                                                                                                                                                   |
| creatinine  cyclohexylammonium  di-n-butylammonium  diethanolamine  diethylammonium  dimethylammonium  di-n-propylammonium  ethanolamine  ethylammonium  (1)  glutamic acid  guanidine  hexamethylenetetramine  n-hexylammonium  histidine  imidazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +36.8<br>+33.1<br>+33.6<br>+27.2<br>+30.6<br>+34.1<br>+37.9<br>+53.1<br>+31.6<br>+44.3<br>+39.3<br>+48.6<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.848<br>4.89<br>10.66<br>11.25 <sup>a</sup><br>11.04 <sup>a</sup><br>10.73 <sup>a</sup><br>11.00 <sup>a</sup><br>9.498 <sup>a</sup>                                                                                                                                | ?<br>0.01<br>0.01<br>?<br>?                              | 16<br>32<br>16<br>12<br>8<br>12<br>12<br>12<br>17                                                                                                                                                                                                   |
| cyclohexylammonium di-n-butylammonium diethanolamine diethylammonium dimethylammonium di-n-propylammonium ethanolamine ethylammonium ethylenediammonium (1) glutamic acid guanidine hexamethylenetetramine n-hexylammonium histidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +33.1<br>+33.6<br>+27.2<br>+30.6<br>+34.1<br>+37.9<br>+53.1<br>+31.6<br>+44.3<br>+39.3<br>+48.6<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.89<br>10.66<br>11.25°<br>11.04°<br>10.73°<br>11.00°<br>9.498°                                                                                                                                                                                                     | ?<br>0.01<br>0.01<br>?<br>?                              | 32<br>16<br>12<br>8<br>8<br>12<br>12<br>12<br>17                                                                                                                                                                                                    |
| cyclohexylammonium di-n-butylammonium diethanolamine diethylammonium dimethylammonium di-n-propylammonium ethanolamine ethylammonium ethylenediammonium (1) glutamic acid guanidine hexamethylenetetramine n-hexylammonium histidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +33.6<br>+27.2<br>+30.6<br>+34.1<br>+37.9<br>+53.1<br>+31.6<br>+44.3<br>+39.3<br>+48.6<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.66<br>11.25 <sup>a</sup><br>11.04 <sup>a</sup><br>10.73 <sup>a</sup><br>11.00 <sup>a</sup><br>9.498 <sup>a</sup>                                                                                                                                                 | ?<br>0.01<br>0.01<br>?<br>?                              | 16<br>12<br>8<br>12<br>12<br>12<br>17                                                                                                                                                                                                               |
| di-n-butylammonium diethanolamine diethylammonium dimethylammonium di-n-propylammonium ethanolamine ethylammonium ethylammonium (1) glutamic acid guanidine hexamethylenetetramine n-hexylammonium histidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +27.2<br>+30.6<br>+34.1<br>+37.9<br>+53.1<br>+31.6<br>+44.3<br>+39.3<br>+48.6<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.25 <sup>a</sup> 11.04 <sup>a</sup> 10.73 <sup>a</sup> 11.00 <sup>a</sup> 9.498 <sup>a</sup>                                                                                                                                                                      | 0.01<br>0.01<br>?<br>?<br>?                              | 12<br>8<br>8<br>12<br>12<br>12<br>17                                                                                                                                                                                                                |
| diethanolamine diethylammonium dimethylammonium di-n-propylammonium ethanolamine ethylammonium glutamic acid guanidine hexamethylenetetramine n-hexylammonium histidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +30.6<br>+34.1<br>+37.9<br>+53.1<br>+31.6<br>+44.3<br>+39.3<br>+48.6<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.04 <sup>a</sup><br>10.73 <sup>a</sup><br>11.00 <sup>a</sup><br>9.498 <sup>a</sup>                                                                                                                                                                                | 0.01<br>0.01<br>?<br>?<br>?                              | 8<br>12<br>12<br>12<br>17                                                                                                                                                                                                                           |
| diethylammonium  dimethylammonium di-n-propylammonium ethanolamine ethylammonium ethylenediammonium (1) glutamic acid guanidine hexamethylenetetramine n-hexylammonium histidine  imidazole lysine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +34.1<br>+37.9<br>+53.1<br>+31.6<br>+44.3<br>+39.3<br>+48.6<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.73°<br>11.00°<br>9.498°                                                                                                                                                                                                                                          | 0.01<br>?<br>?<br>?                                      | 8<br>12<br>12<br>12<br>17                                                                                                                                                                                                                           |
| diethylammonium  dimethylammonium di-n-propylammonium ethanolamine ethylammonium ethylenediammonium (1) glutamic acid guanidine hexamethylenetetramine n-hexylammonium histidine  imidazole lysine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +34.1<br>+37.9<br>+53.1<br>+31.6<br>+44.3<br>+39.3<br>+48.6<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.73°<br>11.00°<br>9.498°                                                                                                                                                                                                                                          | 0.01<br>?<br>?<br>?                                      | 8<br>12<br>12<br>12<br>17                                                                                                                                                                                                                           |
| dimethylammonium di-n-propylammonium ethanolamine ethylammonium ethylenediammonium (1) glutamic acid guanidine hexamethylenetetramine n-hexylammonium histidine imidazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +37.9<br>+53.1<br>+31.6<br>+44.3<br>+39.3<br>+48.6<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.73°<br>11.00°<br>9.498°                                                                                                                                                                                                                                          | ?<br>?<br>?<br>0.01                                      | 12<br>12<br>12<br>17                                                                                                                                                                                                                                |
| dimethylammonium di-n-propylammonium ethylammonium ethylammonium ethylenediammonium (1) glutamic acid guanidine hexamethylenetetramine n-hexylammonium histidine imidazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +53.1<br>+31.6<br>+44.3<br>+39.3<br>+48.6<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.73°<br>11.00°<br>9.498°                                                                                                                                                                                                                                          | ?<br>?<br>0.01                                           | 12<br>12<br>17                                                                                                                                                                                                                                      |
| di-n-propylammonium ethanolamine ethylammonium ethylenediammonium (1) glutamic acid guanidine hexamethylenetetramine n-hexylammonium histidine imidazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +31.6<br>+44.3<br>+39.3<br>+48.6<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.00°<br>9.498°                                                                                                                                                                                                                                                    | ?                                                        | 12<br>17                                                                                                                                                                                                                                            |
| ethanolamine ethylammonium ethylenediammonium (1) glutamic acid guanidine hexamethylenetetramine n-hexylammonium histidine imidazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +44.3<br>+39.3<br>+48.6<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.498ª                                                                                                                                                                                                                                                              | 0.01                                                     | 17                                                                                                                                                                                                                                                  |
| ethylammonium  ethylenediammonium (1) glutamic acid guanidine hexamethylenetetramine n-hexylammonium histidine  imidazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +39.3<br>+48.6<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                     | _                                                        | _                                                                                                                                                                                                                                                   |
| ethylammonium  ethylenediammonium (1) glutamic acid guanidine hexamethylenetetramine n-hexylammonium histidine  imidazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +48.6<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.70°                                                                                                                                                                                                                                                              | _                                                        | R                                                                                                                                                                                                                                                   |
| ethylammonium  ethylenediammonium (1) glutamic acid guanidine hexamethylenetetramine n-hexylammonium histidine  imidazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +48.6<br>+44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $10.70^a$                                                                                                                                                                                                                                                           | _                                                        |                                                                                                                                                                                                                                                     |
| ethylenediammonium (1) glutamic acid guanidine hexamethylenetetramine n-hexylammonium histidine imidazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +44.8<br>+39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.70                                                                                                                                                                                                                                                               | •                                                        | 12                                                                                                                                                                                                                                                  |
| ethylenediammonium (1) glutamic acid guanidine hexamethylenetetramine n-hexylammonium histidine  imidazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +39.4<br>+28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                     |                                                          |                                                                                                                                                                                                                                                     |
| glutamic acid guanidine hexamethylenetetramine n-hexylammonium histidine imidazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     |                                                          | 14                                                                                                                                                                                                                                                  |
| guanidine hexamethylenetetramine n-hexylammonium histidine imidazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                     | 0.015                                                    | 8                                                                                                                                                                                                                                                   |
| guanidine hexamethylenetetramine n-hexylammonium histidine imidazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +50.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.162                                                                                                                                                                                                                                                               |                                                          | 15                                                                                                                                                                                                                                                  |
| hexamethylenetetramine n-hexylammonium histidine imidazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                     | 0.01                                                     | 8                                                                                                                                                                                                                                                   |
| n-hexylammonium histidine imidazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +36.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.90                                                                                                                                                                                                                                                                | 0.01                                                     | 31                                                                                                                                                                                                                                                  |
| histidine<br>imidazole<br>lysine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.50                                                                                                                                                                                                                                                                |                                                          |                                                                                                                                                                                                                                                     |
| imidazole<br>lysine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +30.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     |                                                          | 14                                                                                                                                                                                                                                                  |
| imidazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +29.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.04                                                                                                                                                                                                                                                                |                                                          | 17                                                                                                                                                                                                                                                  |
| imidazole<br>lysine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +29.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.03                                                                                                                                                                                                                                                                |                                                          | 31                                                                                                                                                                                                                                                  |
| imidazole<br>lysine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +26.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.13                                                                                                                                                                                                                                                                | 0.0062                                                   | 32                                                                                                                                                                                                                                                  |
| lysine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +52.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $7.15^{a}$                                                                                                                                                                                                                                                          |                                                          | 17                                                                                                                                                                                                                                                  |
| lysine -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +42.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     |                                                          |                                                                                                                                                                                                                                                     |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.15                                                                                                                                                                                                                                                                |                                                          | 16                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +26.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.127                                                                                                                                                                                                                                                               |                                                          | 17                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +24.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     | 0.01                                                     | 8                                                                                                                                                                                                                                                   |
| medazepam ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +23.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.61                                                                                                                                                                                                                                                                |                                                          | 31                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +58.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $10.66^{a}$                                                                                                                                                                                                                                                         | ?                                                        | 12                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.00                                                                                                                                                                                                                                                               | •                                                        |                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                     |                                                          | 14                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +55.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     | 0.01                                                     | 8                                                                                                                                                                                                                                                   |
| 2-methylpyridinium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +41.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.42                                                                                                                                                                                                                                                                |                                                          | 31                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +42.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.08                                                                                                                                                                                                                                                                |                                                          | 16                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +35.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.33                                                                                                                                                                                                                                                                |                                                          | 16                                                                                                                                                                                                                                                  |
| <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +37.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.50                                                                                                                                                                                                                                                                | 0.01                                                     | 8                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                     | 0.01                                                     |                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +27.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     | 0.01                                                     | 14                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +25.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     | 0.01                                                     | 8                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +28.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.755                                                                                                                                                                                                                                                              |                                                          | 17                                                                                                                                                                                                                                                  |
| 1,10-phenanthroline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +32.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.07                                                                                                                                                                                                                                                                |                                                          | 31                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +32.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     | 0.01                                                     | 8                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                     | 0.01                                                     |                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +37.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40.00                                                                                                                                                                                                                                                               | •                                                        | 14                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +42.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.69°                                                                                                                                                                                                                                                              | ?                                                        | 12                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +51.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.13                                                                                                                                                                                                                                                                |                                                          | 31                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     | ?                                                        | 12                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     | 0.01                                                     | 8                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                     |                                                          |                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +32.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     | ?                                                        | 12                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +30.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     | 0.01                                                     | 8                                                                                                                                                                                                                                                   |
| tetramethylammonium -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +42.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     | 0.01                                                     | 8                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +44.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     | ?                                                        | 12                                                                                                                                                                                                                                                  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     | ;<br>?                                                   | 12                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                     |                                                          |                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +21.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     | 0.01                                                     | 8                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.93°                                                                                                                                                                                                                                                               | ?                                                        | 12                                                                                                                                                                                                                                                  |
| triethylammonium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +30.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     | 0.01                                                     | 8                                                                                                                                                                                                                                                   |
| · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +33.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $10.72^{a}$                                                                                                                                                                                                                                                         | ?                                                        | 12                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +47.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.80°                                                                                                                                                                                                                                                               | ?                                                        | 12                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                     | ?                                                        |                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +25.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.66°                                                                                                                                                                                                                                                              | :                                                        | 12                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.076                                                                                                                                                                                                                                                               |                                                          | 17                                                                                                                                                                                                                                                  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +29.5<br>+26.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                     | 0.01                                                     | 8                                                                                                                                                                                                                                                   |

TABLE IV. Mobilities and Apparent  $pK_a$  Values of Cations  $(pK_a^*)$  in Mixed Solvents<sup>12</sup>

|                        | M/    | 'Wa                | D/N   | $I/W^b$     |
|------------------------|-------|--------------------|-------|-------------|
| substance              | $u^d$ | pK <sub>a</sub> *c | $u^d$ | $pK_a^{*c}$ |
| ammonium               | +49.9 | 8.76               | +25.9 | 9.73        |
| methylammonium         | +51.3 | 9.89               | +27.3 | 10.69       |
| dimethylammonium       | +51.1 | 9.86               | +29.2 | 10.47       |
| trimethylammonium      | +49.0 | 8.38               | +27.5 | 8.79        |
| tetramethylammonium    | +46.5 |                    | +26.4 |             |
| ethylammonium          | +45.6 | 9.81               | +25.5 | 10.59       |
| diethylammonium        | +40.8 | 10.07              | +24.5 | 10.68       |
| triethylammonium       | +36.5 | 9.49               | +22.4 | 9.81        |
| tetraethylammonium     | +37.8 |                    | +23.9 |             |
| n-propylammonium       | +41.0 | 9.55               | +23.5 | 10.72       |
| di-n-propylammonium    | +34.0 | 11.08              | +20.9 | 10.46       |
| tri-n-propylammonium   | +29.0 | 9.29               | +18.7 | 9.45        |
| tetra-n-propylammonium | +26.6 |                    | +18.0 |             |
| n-butylammonium        | +37.7 | 9.69               | +22.3 | 10.46       |
| di-n-butylammonium     | +29.4 | 9.92               | +18.7 | 10.46       |
| tri-n-butylammonium    | +23.3 | 9.24               | +16.0 | 9.38        |
| tetra-n-butylammonium  | +22.4 |                    | +14.9 |             |

 $^a$ M/W = 7:3 (mol/mol) methanol/water.  $^b$ D/M/W = 3:4:3 (mol/mol/mol) dimethyl sulfoxide/methanol/water.  $^c$ Data obtained by potentiometric measurement.  $^d$ 10 $^-$ 9 m $^2$  V $^-$ 1 s $^-$ 1.

the given data that the precision of the data by other authors lie within the same reproducibility interval.

When  $u_i$  and  $pK_a$  are evaluated by computer simulation, a number of constants (e.g.,  $u_i$  and  $pK_a$  of the counterion) must be involved in the computation procedure. Obviously, the accuracy of these data also has influence on the accuracy of the resulting data. Fortunately, these constants are mostly known with sufficient precision.

The problem of the accuracy of the resulting values of  $u_i$  and  $pK_a$  obtained by computer simulation was also the subject of a separate paper. On the basis of the reproducibility of the experimental  $R_{\rm E}$  values being  $\pm 0.02$  unit, the accuracy of the obtained quantities was calculated for each of the electrolyte systems used. The conclusion was that the accuracy of the results depends on the mobility and ionization constant of the measured substance, on the pH of the leading electrolyte, and on the ionization constant of the counterion used. The best accuracy that could be reached was  $(0.2-1.2) \times 10^{-9}$  m<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup> in mobility and  $\pm 0.01$  in p $K_a$  measurements.

The accuracy of the methods described may be discussed on the basis of comparison of the obtained data with tabulated data from conductometric and potentiometric measurements. The precision of the methods may be estimated from the values of the standard deviation (if given by the authors). Table VII enables comparison of the various methods by presenting  $u_i$ ,  $pK_a$ , and the respective standard deviation ( $\sigma$ ) of three selected anions (acetate, formate, and benzoate). It can be seen from the table that the accuracy of all the methods described is sufficient; the measured values mostly coincide with the tabulated ones within the interval  $\pm 3\sigma$ .

Concerning the precision of the methods, there are greater differences between the various methods. In the method of Carchon and Eggermont<sup>13</sup> the rsd of 338 values ranged from 0 to 9.1% with a median of 1.2%. The method of Pospichal et al.<sup>8</sup> provided an average rsd of 59 measured values equal to 0.55%. The computational method of Beckers<sup>27</sup> presents its results without data on rsd; the precision of the method strongly de-

TABLE V. Mobilities and Stability Constants of Complexes

| Complexes                                               |                                                                               |                       |                                         |
|---------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------|-----------------------------------------|
| substance <sup>a</sup>                                  | <i>u</i> , 10 <sup>-9</sup> m <sup>2</sup><br>V <sup>-1</sup> s <sup>-1</sup> | $\log \beta$          | ref                                     |
| Ba-Ac(+)                                                | +21.7                                                                         | -3.76                 | 22                                      |
| Ca-Ac(+)                                                | +28.9                                                                         | -0.24                 | 22                                      |
| Zn-Ac(+)                                                | +26.2                                                                         | 0.83                  | 22                                      |
| Cd-Ac(+)                                                | +23.0                                                                         | 1.35                  | 22                                      |
| Cu-Ac(+)                                                | +26.4                                                                         | 2.12                  | 22                                      |
| Mg-Tar                                                  | 0                                                                             | 2.349                 | 23                                      |
| Ca-Tar                                                  | 0                                                                             | 2.895                 | 23                                      |
| Sr-Tar<br>Ba-Tar                                        | 0                                                                             | $2.690 \\ 2.686$      | $\begin{array}{c} 23 \\ 23 \end{array}$ |
| Cd-Tar                                                  | 0                                                                             | 2.913                 | 23                                      |
| Co-Tar                                                  | ŏ                                                                             | 3.225                 | 23                                      |
| Mg-HCit                                                 | 0                                                                             | 1.672                 | 23                                      |
| Mg-Cit(-)                                               | -21.1                                                                         | 4.917                 | 23                                      |
| Ca-HCit                                                 | 0                                                                             | 2.786                 | 23                                      |
| Ca-Cit(-)                                               | -22.3                                                                         | 4.850                 | 23                                      |
| Sr-HCit                                                 | 0                                                                             | 2.815                 | 23                                      |
| Sr-Cit(-)                                               | -23.3                                                                         | 4.410                 | 23                                      |
| Ba-HCit<br>Ba-Cit(-)                                    | 0<br>-22.0                                                                    | 2.686<br>4.150        | 23<br>23                                |
| Ba-Glyc(+)                                              | +21.6                                                                         | 0.935                 | 25<br>25                                |
| Sr-Glyc(+)                                              | +24.8                                                                         | 1.079                 | 25<br>25                                |
| Ca-Glyc(+)                                              | +29.7                                                                         | 1.612                 | 25                                      |
| Mg-Glyc(+)                                              | +32.0                                                                         | 1.441                 | 25                                      |
| Cd-Glyc(+)                                              | +23.0                                                                         | 1.841                 | 25                                      |
| Co-Glyc(+)                                              | +27.4                                                                         | 2.216                 | 25                                      |
| Ni-Glyc(+)                                              | +27.5                                                                         | 2.230                 | 25                                      |
| Ni-Glyc <sub>2</sub>                                    | 0                                                                             | 3.544                 | 25                                      |
| Zn-Glyc(+)                                              | +26.8                                                                         | 2.286                 | 25                                      |
| Zn-Glyc <sub>2</sub><br>Ba-Lac(+)                       | 0<br>+20.9                                                                    | 3.684                 | $\begin{array}{c} 25 \\ 25 \end{array}$ |
| Sr-Lac(+)                                               | +23.7                                                                         | $0.540 \\ 0.777$      | 25<br>25                                |
| Ca-Lac(+)                                               | +28.0                                                                         | 1.381                 | 25<br>25                                |
| Mg-Lac(+)                                               | +29.9                                                                         | 1.255                 | 25                                      |
| Cd-Lac(+)                                               | +22.2                                                                         | 1.662                 | 25                                      |
| Co-Lac(+)                                               | +26.1                                                                         | 2.027                 | 25                                      |
| Fe-Lac(+)                                               | +26.3                                                                         | 1.877                 | 25                                      |
| Ni-Lac(+)                                               | +26.1                                                                         | 2.191                 | 25                                      |
| $     Z_{n-Lac(+)} \\     B_{a-\beta}HB(+) $            | +25.5<br>+20.2                                                                | 2.262                 | $\begin{array}{c} 25 \\ 25 \end{array}$ |
| $Sr-\beta HB(+)$                                        | +20.2<br>+22.8                                                                | $0.512 \\ 0.819$      | 25<br>25                                |
| $Ca-\beta HB(+)$                                        | +26.5                                                                         | 1.235                 | 25                                      |
| $Mg-\beta HB(+)$                                        | +28.2                                                                         | 0.491                 | 25                                      |
| $Ni-\beta HB(+)$                                        | +24.9                                                                         | 1.038                 | 25                                      |
| $Zn-\beta HB(+)$                                        | +24.3                                                                         | 1.163                 | 25                                      |
| $Ba-\alpha HB(+)$                                       | +20.2                                                                         | 0.357                 | 25                                      |
| $Sr-\alpha HB(+)$                                       | +22.8                                                                         | 0.723                 | 25                                      |
| Ca-αHB(+)                                               | +26.5                                                                         | 1.471                 | 25                                      |
| $Mg-\alpha HB(+)$ $Cd-\alpha HB(+)$                     | +28.2<br>+21.4                                                                | 1.297 $1.800$         | $\begin{array}{c} 25 \\ 25 \end{array}$ |
| $Co-\alpha HB(+)$                                       | +24.8                                                                         | 2.131                 | 25<br>25                                |
| $Ni-\alpha HB(+)$                                       | +24.9                                                                         | 2.155                 | 25                                      |
| $Ni-\alpha HB_2$                                        | 0                                                                             | 3.426                 | 25                                      |
| $Zn-\alpha HB(+)$                                       | +24.3                                                                         | 2.209                 | 25                                      |
| $\mathbf{Z}\mathbf{n}$ - $\alpha\mathbf{H}\mathbf{B}_2$ | 0                                                                             | 3.572                 | 25                                      |
| Ba-HIB(+)                                               | +20.2                                                                         | 0.414                 | 25                                      |
| Sr-HIB(+)                                               | +22.8                                                                         | 0.666                 | 25                                      |
| Ca-HIB(+)<br>Mg-HIB(+)                                  | +26.5<br>+28.2                                                                | 1.495<br>1.350        | 25 $25$                                 |
| Mg-HIB <sub>2</sub>                                     | +28.2<br>0                                                                    | $\frac{1.350}{2.733}$ | 25<br>25                                |
| Cd-HIB(+)                                               | +21.4                                                                         | 1.581                 | 25<br>25                                |
| Cd-HIB <sub>2</sub>                                     | 0                                                                             | 3.110                 | 25                                      |
| Co-HIB(+)                                               | +24.8                                                                         | 2.130                 | 25                                      |
| Co-HIB <sub>2</sub>                                     | 0                                                                             | 3.033                 | 25                                      |
| Ni-HIB(+)                                               | +24.9                                                                         | 2.008                 | 25                                      |
| Ni-HIB2 $ Zn-HIB(+)$                                    | 0<br>+24.3                                                                    | 3.865<br>2.145        | $\frac{25}{25}$                         |
| $Zn-HIB(+)$ $Zn-HIB_2$                                  | +24.3<br>0                                                                    | $2.145 \\ 3.862$      | 25<br>25                                |
| 511-111D3                                               | Ū                                                                             | 0.002                 | <b>2</b> 0                              |

<sup> $\alpha$ </sup>Ac = acetate, Tar = tartrate, Cit = citrate, Glyc = glycolate, Lac = lactate,  $\beta$ HB =  $\beta$ -hydroxybutyrate,  $\alpha$ HB =  $\alpha$ -hydroxybutyrate, HIB =  $\alpha$ -hydroxyisobutyrate.

pends on the number of experimental data taken for the evaluation of  $u_i$  and  $pK_i$ . The method of Hirokawa et al. <sup>15</sup> used for the evaluation of a set of data measured

TABLE VI. Mobilities and Stability Constants of Lanthanoid Complexes

|               |           |          | $u$ , $10^{-9}$ m <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> |           |             | $\log \beta$ |
|---------------|-----------|----------|----------------------------------------------------------------|-----------|-------------|--------------|
| Ln³+          | Ln-Ac(2+) | Ln-Ac(+) | Ln-HIB(2+)                                                     | Ln-HIB(+) | Ln-HIBAc(+) | Ln-HIBAc(+)  |
| La            | 47.4      | 23.7     | 41.3                                                           | 20.7      | 22.3        | 5.18         |
| Ce            | 47.1      | 23.5     | 41.1                                                           | 20.5      | 22.2        | 5.42         |
| $\mathbf{Pr}$ | 47.1      | 23.6     | 39.7                                                           | 19.9      | 21.9        | 5.54         |
| Nd            | 47.1      | 23.6     | 39.6                                                           | 19.8      | 21.9        | 5.64         |
| $\mathbf{Sm}$ | 47.2      | 23.6     | 39.6                                                           | 19.8      | 21.9        | 5.89         |
| Eu            | 47.2      | 23.6     | 40.5                                                           | 20.2      | 22.1        | 5.95         |
| Gd            | 47.2      | 23.6     | 39.9                                                           | 20.0      | 22.0        | 5.84         |
| Tb            | 47.1      | 23.6     | 39.7                                                           | 19.8      | 21.9        | 5.90         |
| Dy            | 47.0      | 23.5     | 37.8                                                           | 18.9      | 21.5        | 5.87         |
| Ho            | 47.1      | 23.5     | 38.6                                                           | 19.3      | 21.6        | 5.88         |
| Er            | 47.1      | 23.5     | 39.6                                                           | 19.8      | 21.9        | 5.89         |
| $\mathbf{Tm}$ | 47.0      | 23.5     | 38.7                                                           | 19.3      | 21.6        | 5.96         |
| Yb            | 47.0      | 23.5     | 38.1                                                           | 19.1      | 21.5        | 5.93         |
| Lu            | 47.1      | 23.5     | 39.7                                                           | 19.8      | 21.9        | 5.98         |

<sup>&</sup>lt;sup>a</sup> Reference 24. Ac = acetate, HIB =  $\alpha$ -hydroxyisobutyrate.

TABLE VII. Comparison of Precision and Accuracy of the Various Methods of Measurement of u (10<sup>-9</sup> m<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>) and p.K.ª

|                                      | acetate     |                   | formate     |                   | benzoate    |                     |     |  |
|--------------------------------------|-------------|-------------------|-------------|-------------------|-------------|---------------------|-----|--|
|                                      | и           | $pK_a$            | и           | $pK_a$            | и           | $pK_a$              | ref |  |
| tabulated values                     | 42.4        | 4.755             | 56.6        | 3.752             | 33.6        | 4.203               |     |  |
|                                      | 42.9        |                   |             |                   | 33.4        | 4.200               | 33  |  |
| measurement at complete ionization   | 42.7        |                   | 58.4        |                   | 31.9        |                     | 13  |  |
|                                      | 43.3 (0.09) |                   | 57.4 (0.27) |                   | 33.9 (0.10) |                     | 8   |  |
| measurement at incomplete ionization | 43.0        | 4.745             | 57.5        | 3.65              | 33.9        | 4.465               | _   |  |
|                                      |             |                   |             |                   | 33.6        | 4.164               | 27  |  |
|                                      | 42.5 (0.6)  | $4.70^{b}$        | 56.8 (0.5)  | $3.72^{b}$        |             |                     | 11  |  |
|                                      |             |                   | 57.1 (0.58) | 3.796 (0.030)     | 32.9 (1.44) | 4.166 (0.106)       | 15  |  |
| •                                    | 41.9 (1.23) | $4.736^b$ (0.015) | 56.5 (0.76) | $3.705^b (0.005)$ | 33.9 (0.62) | $4.179^{b}$ (0.013) | 32  |  |

in six electrolyte systems. The average rsd was 1.5% and 2.4% in the determination of mobility for 37 monobasic acids and 17 dibasic acids, respectively; the average value of  $\sigma$  in the determination of p $K_a$  was 0.055 and 0.32 unit for mono- and dibasic acids, respectively. The method of Kašička et al. 11 was based on data from 14 electrolyte systems, and the rsd of mobility for monobasic acids was 2%. The method of Pospichal et al.<sup>32</sup> provided an average rsd of 10 values of mobilities of 2% (from measurements in 3 electrolyte systems). The computer-aided slope-intercept method of Jokl et al.<sup>31</sup> used data from two measurements at two different pHs; the resulting average rsd of mobility was 0.8% and the average value of  $pK_n$  was 0.03 (n = 12).

The conclusion can be made that the isotachophoretic method of determination of  $u_i$  and  $pK_a$  provides accurate results. In comparison with other (potentiometric, conductometric) methods, it shows lower precision. which is, however, compensated by the short analysis time and by the possibility of evaluating data of several substances simultaneously by merely injecting a couple of microliters of a solution of the respective mixture.

#### VII. Acknowledgments

We are grateful to Dr. Andreas Chrambach, National Institutes of Health, Bethesda, MD, for initiating our interest in mobility measurements and to Dr. Charles B. Cuono, Yale University, New Haven, CT, for kindly providing samples of some Good's buffers.

#### VIII. References

- Everaerts, F. M.; Beckers, J. L.; Verheggen, Th. P. E. M. Isotachophoresis. Theory, Instrumentation and Applications; Elsevier: Amsterdam, Oxford, New York, 1976.
   Boček, P.; Deml, M.; Gebauer, P.; Dolnik, V. Analytical Isotachophoresis; VCH Verlagsgesellschaft: Weinheim, 1988.
- (3) Gebauer, P.; Dolnik, V.; Deml, M.; Boček, P. Adv. Electro-phoresis 1987, 1, 281.
- (a) Isotachophoretic Analyzer IP-3A, Shimadzu, Kyoto, Japan.
  (b) Tachophor delta, ITABA, Vällingby, Sweden.
- Haruki, T.; Akiyama, J. Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, 1974, paper no. 420. Deml, M.; Boček, P.; Janāk, J. J. Chromatogr. 1975, 109, 49. Van der Wiel, H. J. J. Chromatogr. 1972, 64, 196. Pospichal, J.; Deml, M.; Zemlová, Z.; Boček, P. J. Chromatogr. 1972, 64, 196.
- 1985, 320, 139.
- Hirokawa, T.; Nishino, M.; Aoki, N.; Kiso, Y.; Sawamoto, Y.; Yagi, T.; Akiyama, J. J. Chromatogr. 1983, 271, D1. Boček, P.; Ryšlavý, Z.; Deml, M.; Janák, J. J. Chromatogr. (10)
- 1980, 191, 271
- Kašička, V.; Vacik, J.; Prusik, Z. J. Chromatogr. 1985, 320, 33. Kenndler, E.; Jenner, P. J. Chromatogr. 1987, 390, 185.
- (13) Carchon, H.; Eggermont, E. Electrophoresis 1982, 3, 263.
- Kiso, Y.; Hirokawa, T. Chem. Lett. 1979, 891. (15) Hirokawa, T.; Nishino, M.; Kiso, Y. J. Chromatogr. 1982, 252,
- (16) Hirokawa, T.; Kobayashi, S.; Kiso, Y. J. Chromatogr. 1985,
- Hirokawa, T.; Gojo, T.; Kiso, Y. J. Chromatogr. 1986, 369, 59. Hirokawa, T.; Gojo, T.; Kiso, Y. J. Chromatogr. 1987, 390, 201. Kiso, Y.; Hirokawa, T. Chem. Lett. 1980, 323. Hirokawa, T.; Kiso, Y. J. Chromatogr. 1982, 252, 33. Hirokawa, T.; Tsuyoshi, T.; Kiso, Y. J. Chromatogr. 1987, 408, 27 (18)
- (21)

- (22) Kiso, Y.; Hirokawa, T. Chem. Lett. 1980, 745.
  (23) Hirokawa, T.; Kiso, Y. J. Chromatogr. 1982, 248, 341.
  (24) Hirokawa, T.; Aoki, N.; Kiso, Y. J. Chromatogr. 1984, 312, 11.
  (25) Hirokawa, T.; Matsuki, T.; Takemi, H.; Kiso, Y. J. Chromatogr. 1984, 322, 202. ogr. 1983, 280,
- (26) Hirokawa, T.; Kobayashi, S.; Kiso, Y. J. Chromatogr. 1987, 410, 279,
- (27) Beckers, J. L. J. Chromatogr. 1985, 320, 147.

(28) Zadražil, V.; Vacík, J. In Isotachophoresis. Basic Course. Advanced Course. ITP-'84 Hradec Králové, Czechoslovakia; Boček, P., Ed.; VVZ URVJT: Spišská Nová Ves, 1984; p 88.
(29) Stover, F. S. J. Chromatogr. 1984, 298, 203.
(30) Stover, F. S. J. Chromatogr. 1986, 368, 476.
(31) Jokl, V.; Polášek, M.; Pospichalová, J. J. Chromatogr. 1987, 391, 427.
(32) Pospichal, J.; Deml, M.; Boček, P. J. Chromatogr. 1987, 390,

17.
(33) Landolt-Börnstein, Zahlenwerte und Funktionen, 6th ed., Vol. 2, Part 7; Springer: Berlin, Göttingen, Heidelberg, 1960.
(34) Sillén, L. G.; Martell, A. E. Stability Constants of Metal-Ion Complexes (Special Publication No. 17); The Chemical Society: London, 1964.
(35) Perrin, D. D. Dissociation Constants of Organic Bases in Aqueous Solution; Butterworths: London, 1965.